首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   424篇
  免费   38篇
  国内免费   130篇
安全科学   8篇
废物处理   8篇
环保管理   179篇
综合类   243篇
基础理论   51篇
污染及防治   55篇
评价与监测   24篇
社会与环境   21篇
灾害及防治   3篇
  2023年   6篇
  2022年   10篇
  2021年   16篇
  2020年   9篇
  2019年   20篇
  2018年   17篇
  2017年   18篇
  2016年   26篇
  2015年   32篇
  2014年   27篇
  2013年   29篇
  2012年   33篇
  2011年   42篇
  2010年   29篇
  2009年   29篇
  2008年   25篇
  2007年   12篇
  2006年   38篇
  2005年   18篇
  2004年   22篇
  2003年   17篇
  2002年   16篇
  2001年   20篇
  2000年   12篇
  1999年   5篇
  1998年   10篇
  1997年   9篇
  1996年   4篇
  1995年   7篇
  1994年   5篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1988年   5篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1977年   1篇
  1975年   1篇
排序方式: 共有592条查询结果,搜索用时 484 毫秒
151.
扎龙湿地的生态环境评价及防治对策   总被引:9,自引:0,他引:9  
介绍了扎龙湿地的生态状况 ,并运用模糊数学对其生态状况给予评价 ,为做好扎龙湿地的生态保护工作 ,提出了相应的对策  相似文献   
152.
The natural wetlands in the Changjiang Estuary, China are important ecologically. The total area of the wetlands in the Changjiang Estuary amounts to 215000 ha. The wetlands consist of littoral and sandy estuarine island areas, and are rich in biological resources. There are 136 species of vascular plant, 150 species of bird, and 68 species of benthic macro-invertebrate in the wetlands. However, the wetland in the Changjiang Estuary is a vulnerable ecosystem. Development of the wetland is mainly influenced by intensive human reclamation, pollution, movement of sediments in the Changjiang River, and the effects of tides and waves. Investigations have shown that maintaining biodiversity, providing resources for the living organisms, purifying environments and resisting natural hazards could be regarded as important functions for the protection of the wetlands. It is proposed that sustainable principles should be supported in developing the wetlands in the future.  相似文献   
153.
ABSTRACT: Rosgen analysis, developed for assessing channel stability in streams from the western United States, is applied to the Oswego River watershed in the New Jersey Pine Barrens. The Rosgen method requires calibration to local conditions due to the impact of peat substrates on channel morphology. In particular, the presence of peat induces low width to depth ratios and greater channel confinement, reversing typical downstream morphologic trends observed in other rivers. Therefore peat is added to those substrates already evaluated by Rosgen. A consistent sequence of Rosgen stream types develops along the Oswego River and its tributaries created by spatially overlapping processes of water table emergence, peat development, and channel formation. This sequence delineates a “natural” transition of stream channel morphology downslope through the watershed. First, as the water table reaches the surface of dry sloughs, Sphagnum growth is stimulated and peat substrates result. These substrates have lower permeability than the underlying gravelly sands. Next, surface runoff, through braided pathways over the peat, eventually erodes mainly anastomosing channels into the peat. Finally, single‐thread channels develop in underlying gravelly sands further downslope. This downslope sequence, expressed as Rosgen stream types, begins generally with DA7 streams arising from dry sloughs. These pass to E7, C7 or DA5 stream types that in turn pass to B5c, C5 and C4 stream types. Departures from the “natural” stream type sequence occur along the course of the Oswego and its tributaries due to human activities such as the construction of dams, bridges and drainage ditches, stream bank erosion at streamside camping and picnic areas and the clear‐cutting of adjacent stands of Atlantic white cedar.  相似文献   
154.
ABSTRACT: The growth of aquatic plants in open‐channels has many adverse environmental effects including, but not limited to, impeding the transport of water, hindering navigation, increasing flood elevations, increasing sediment deposition, and degrading water quality. Existing control strategies include physical removal and chemical treatment. Physical removal is only a temporary solution and chemical treatment is unacceptable if the water will be consumed by humans. The hydrodynamic method can wash out the encroached aquatic plants by keeping flow velocity higher than the critical velocity required to bend and rupture (lodge) their stems. This approach is a promising, physically‐based, efficient, economic, and permanent solution for this problem. However, the success of this approach requires the accurate prediction of the critical lodging velocity. This paper presents an analytic study of the lodging velocity for the submerged portion of aquatic plants of narrow leaved emergent stems that are wider at bottom than the top. Based on the principles of engineering materials and the theory of turbulent flow, a semi‐empirical formula is derived for the prediction of the critical lodging velocity. It indicates that the lodging of aquatic plants is controlled not only by flow conditions but also the geometric and mechanical characteristics of the plants. These analytic results provide a satisfactory explanation of the lodging phenomena observed in the field and are verified by the available experimental data.  相似文献   
155.
This paper is a summary of the various factors influencing weathering of oil after it has been released into the environment from a spill incident. Special emphasis has been placed on biodegradation processes. Results from two field studies conducted in 1994 and 1999 involving bioremediation of an experimental oil spill on a marine sandy shoreline in Delaware and a freshwater wetland on the St. Lawrence River in Quebec, Canada have been presented in the paper.  相似文献   
156.
ABSTRACT: To prioritize sites for riparian restoration, resource managers need to understand how recovery processes vary within landscapes. Complex relationships between watershed conditions and riparian development make it difficult to predict the outcomes of restoration treatments in the semiarid Southwest. Large floods in 1993 scoured riparian areas in the Carrizo watershed on the White Mountain Apache Reservation in east‐central Arizona. We evaluated recovery at three of these sites using repeated photographs and measurements of channel cross sections and stream‐side vegetation along permanent transects. The sites were mapped as lying on the same soil type, had similar streamside vegetative communities, and were similarly treated through livestock exclusion and supplemental seeding. However, the sites and individual reaches within the sites followed strikingly different development paths. Dramatic recovery occurred at a perennial reach where cover of emergent wetland plants increased from 4.7 percent (standard error = 0.8 percent) in October 1995 to 55.5 percent (standard error = 2.7 percent) in September 2001. At several other reaches, geologic and hydro geomorphic characteristics of the sites limited inputs of fine sediment or surface water, resulting in modest or negligible increases in emergent cover. Recovery efforts for highly valued marshlands in this region should prioritize perennial reaches in low gradient valleys where salty sediments are abundant.  相似文献   
157.
总结了洪泽湖湿地的11种生态服务功能,采用生态服务功能相容性分析方法,将洪泽湖湿地生态系统划分为6个功能区:重要物种栖息区、湖体水产养殖区、水产品精养区、水源供应区、社会文化功能区和污染物降解区,并提出了相应的保护措施。  相似文献   
158.
Greenhouse gas (GHG) emissions by constructed wetlands (CWs) could mitigate the environmental benefits of nutrient removal in these man-made ecosystems. We studied the effect of 3 different macrophyte species and artificial aeration on the rates of nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4) production in CW mesocosms over three seasons. CW emitted 2-10 times more GHG than natural wetlands. Overall, CH4 was the most important GHG emitted in unplanted treatments. Oxygen availability through artificial aeration reduced CH4 fluxes. Plant presence also decreased CH4 fluxes but favoured CO2 production. Nitrous oxide had a minor contribution to global warming potential (GWP < 15%). The introduction of oxygen through artificial aeration combined with plant presence, particularly Typha angustifolia, had the overall best performance among the treatments tested in this study, including lowest GWP, greatest nutrient removal, and best hydraulic properties.  相似文献   
159.
High methane emissions from a littoral zone on the Qinghai-Tibetan Plateau   总被引:1,自引:0,他引:1  
The littoral zones of lakes have been regarded as hotspots of methane (CH4) fluxes through several studies. In the present study, we measured CH4 fluxes in six kinds of littoral zones of Huahu Lake on the Qinghai-Tibetan Plateau in the peak growing season of 2006 and 2007. We found that CH4 efflux (ranging from −0.1 to 90 mg CH4 m−2 h−1) from the littoral zones of this lake was relatively high among those of boreal and temperate lakes. Our results also showed that emergent plant zones (Hippuris vulgaris and Glyceria maxima stands) recorded the highest CH4 flux rate. The CH4 flux in the floating mat zone of Carex muliensis was significantly lower than those of the emergent plant zones. CH4 fluxes in the floating-leaved zone of Polygonum amphibium and bare lakeshore showed no significant difference and ranked last but one, only higher than that of the littoral meadow (Kobresia tibetica). Plant biomass and standing water depths were important factors to explain such spatial variations in CH4 fluxes. No significant temporal variations in CH4 fluxes were found due to the insignificant variations of physical factors in the peak growing season. These results may help in our understanding of the importance of the littoral zone of lakes, especially the emergent plant zone, as a hotspot of CH4 emission.  相似文献   
160.
The San Rossore Natural Park, located on the Tuscany (Italy) coast, has been utilized over the last 10 years for many remote sensing campaigns devoted to coastal zone monitoring. A wet area is located in the south-west part of the Natural Park and it is characterized by a system of ponds and dunes formed by sediment deposition occurring at the Arno River estuary. The considerable amount of collected data has permitted us to investigate the evolution of wetland spreading and land coverage as well as to retrieve relevant biogeochemical parameters, e.g. green biomass, from remote sensing images and products. This analysis has proved that the monitoring of coastal wetlands, characterized by shallow waters, moor and dunes, demands dedicated aerospace sensors with high spatial and spectral resolution. The outcomes of the processing of images gathered during several remote sensing campaigns by airborne and spaceborne hyperspectral sensors are presented and discussed. A particular effort has been devoted to sensor response calibration and data validation due to the complex heterogeneity of the observed natural surfaces.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号