全文获取类型
收费全文 | 1525篇 |
免费 | 153篇 |
国内免费 | 682篇 |
专业分类
安全科学 | 146篇 |
废物处理 | 156篇 |
环保管理 | 120篇 |
综合类 | 1216篇 |
基础理论 | 100篇 |
污染及防治 | 596篇 |
评价与监测 | 26篇 |
出版年
2024年 | 14篇 |
2023年 | 45篇 |
2022年 | 27篇 |
2021年 | 51篇 |
2020年 | 54篇 |
2019年 | 55篇 |
2018年 | 52篇 |
2017年 | 73篇 |
2016年 | 88篇 |
2015年 | 97篇 |
2014年 | 147篇 |
2013年 | 138篇 |
2012年 | 156篇 |
2011年 | 143篇 |
2010年 | 139篇 |
2009年 | 122篇 |
2008年 | 142篇 |
2007年 | 117篇 |
2006年 | 120篇 |
2005年 | 76篇 |
2004年 | 69篇 |
2003年 | 68篇 |
2002年 | 37篇 |
2001年 | 44篇 |
2000年 | 41篇 |
1999年 | 41篇 |
1998年 | 27篇 |
1997年 | 28篇 |
1996年 | 30篇 |
1995年 | 21篇 |
1994年 | 21篇 |
1993年 | 21篇 |
1992年 | 17篇 |
1991年 | 15篇 |
1990年 | 7篇 |
1989年 | 17篇 |
排序方式: 共有2360条查询结果,搜索用时 31 毫秒
51.
采用电化学再生法对吸附处理染料废水产生的饱和粉末活性炭(PAC)进行再生,以NaCl为电解质,考察了电源类型、pH、再生时间、电压和NaCl浓度对活性炭再生率的影响,并对活性炭表面酸性含氧官能团进行测定。结果表明:(1)在pH=1、直流电压为6V、NaCl为6g/L、再生90min的最佳条件下,采用单室反应器,饱和PAC再生率达到59.09%。(2)电极循环伏安曲线结果表明,饱和PAC电极表面发生氧化反应,与主电极直接和间接氧化共同作用,使活性炭表面吸附的污染物降解。活性炭表面酸性含氧官能团滴定和红外光谱测试结果进一步表明,电化学再生法使活性炭表面基团得到恢复。 相似文献
52.
53.
用微孔填充理论研究活性炭对有机气体的吸附性能 总被引:1,自引:1,他引:1
用微孔填充理论研究了活性炭C40/4对丙酮、甲苯、二氯甲烷有机气体的吸附性能,测试了该活性炭对3种有机气体在不同温度下(288.15,293.15,298.15K)的吸附结果。用D—R方程处理了实验数据,建立了3种有机气体在活性炭C40/4上的等温吸附模型,并将实验测试值与理论预测值进行了比较。实验结果表明:微孔填充理论及D—R方程可很好地描述活性炭C40/4对有机气体的吸附性能,理论预测值与实验测试值的平均相对误差小于3%;有机气体分压较高时,由于发生毛细凝聚,理论预测值较实验测试值偏低。 相似文献
54.
为了破坏丙烯腈的氰基键(C≡N),降低丙烯腈废水的毒性,采用铁炭微电解系统处理浓度为100.0 mg/L的丙烯腈模拟废水。为了避免活性炭吸附的影响,建立铁炭微电解和活性炭对照试验两套系统。结果表明,铁炭微电解系统能够有效地分解转化丙烯腈,破坏丙烯腈分子结构中的氰基键(C≡N),降低其毒性。铁炭微电解处理丙烯腈废水时,主要依赖铁炭之间形成的自由氢基[H]和新生成的Fe2+的化学氧化还原作用分解转化丙烯腈,而活性炭仅具有一定的吸附能力。铁炭微电解系统能够使丙烯腈废水中氮的形式发生转变,而不具备脱氮能力。 相似文献
55.
不同染料化合物在颗粒活性炭上的分形吸附规律 总被引:4,自引:1,他引:4
研究了颗粒活性炭对6种染料的吸附特征,结果表明,它们的吸附等温线均符合Ffendlich方程;由此计算出颗粒活性炭的表面分形维数均处于2到3之间.不同染料吸附时计算出的分形维数不同,吸附染料过程是在分形表面上发生的反应.吸附动力学过程分为快速吸附和慢吸附两个阶段,而且溶液中剩余染料的浓度变化动力学符合方程:Cout∝t^-α,表明该过程具有类分形动力学特征;并由指数α计算上述动力学反应的分形维数D.在实验的温度范围内,6种染料的吸附量和速度均随着温度的升高而增加;绿色染料吸附时的类分形动力学参数指数α和分形维数D也随之升高,而其它染料不呈现类似的规律. 相似文献
56.
采用了微波加热技术,通过在不同微波功率和辐射时间条件下对不同粒径活性炭进行改性,研究了改性前后活性炭的表面化学基团、元素组成的变化,以及对S02吸附性能的影响。结果表明,经过微波改性后活性炭的S02吸附性能大为提高,微波功率是影响改性活性炭脱硫性能的主要因素。活性炭经微波热处理后,酸性基团发生分解,表面含氧量减少,碱性特征增强,是吸附性能增加的主要原因之一。 相似文献
57.
58.
59.
60.
为确定减少氰化物残余水平的工程技术条件,使其低于加拿大饮用水水质规定的可接受最大浓度(MAC):0.2mg/L,研究了颗粒状活性炭(GAC)对水溶液中低浓度氰化物(≤1mg/L)的吸附,经过30h的连续混合,吸附过程是缓慢进行的,其初速率随活性炭粒径的增大而增大;一般而言,吸附量与pH值无关(附在pH8-9内略有增加外);当氰化物浓度>0.3mg/L,吸附量与氰化物溶液浓度呈线性增加;<0.3mg/L则与溶液浓度的一个幂次方成正比,而弗罗因德利希(Freundlich)等温线指出,氰化物浓度对吸附的影响与单位粒状活性炭的吸附量成正比,增加次氮基三乙酸(NTA)达10mg/L以上时,对吸附无影响,但胡敏酸、Ca(Ⅱ)Mg(Ⅱ)Ml(Ⅲ)和Fe(Ⅲ)可减少吸附量的30-50%,GAC吸附氰化物的可能机制及其在水处理方面的意义已被认可,包括CN^-在内的吸附机制是离子交换,象HCN分子这样的氰化物吸附是通过与含氧官能团(如-COH)形成氢键进行的。 相似文献