首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   7篇
  国内免费   19篇
安全科学   1篇
废物处理   3篇
环保管理   18篇
综合类   21篇
基础理论   19篇
污染及防治   54篇
评价与监测   10篇
社会与环境   1篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2017年   4篇
  2016年   4篇
  2015年   2篇
  2014年   2篇
  2013年   33篇
  2012年   7篇
  2011年   5篇
  2010年   1篇
  2009年   2篇
  2008年   10篇
  2007年   2篇
  2006年   1篇
  2005年   5篇
  2004年   2篇
  2003年   5篇
  2002年   5篇
  2001年   5篇
  2000年   3篇
  1999年   3篇
  1998年   7篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1986年   1篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有127条查询结果,搜索用时 915 毫秒
111.
The intensive and abundant use of synthetic herbicides has been questioned in recent decades due to the strong dependence and also the resistance effects that are identified in weeds. Several grain crops suffer from the weed control system because many of the weeds are already resistant to the main herbicides that are used. In recent years, there has been a large gap in the market without the addition of new synthetic herbicides with mechanisms of action that differ from those already existing. The objective of this short piece is to address and overcome this challenge and bring an innovative and alternative solution that proposes a synergistic action system between bioherbicides produced by the fungus Trichoderma koningiopsis and synthetic herbicides (2,4‐dichlorophenoxyacetic acid, glyphosate, and ammonium glufosinate). The plants included in this study were Bidens pilosa (amor seco, or in the United States, beggar ticks or Spanish needle), Euphorbia heterophylla (adeus‐brasil), and Conyza bonariensis (margaridinha‐do‐campo, or, in the United States, hairy fleabane or asthmaweed). It was verified that, in the application of the biocomposites in the presence of chemical herbicides, potentiation of the phytotoxic action (100%) occurred under the target plants, emphasizing phytotoxicity to the weed, C. bonariensis, which is currently resistant to available herbicides. The bioherbicides studied have promising characteristics to be explored in the biocontrol of weeds.  相似文献   
112.
Abstract

The characteristics of the air pattern and spray droplet trajectories from the Algonquin airblast forestry sprayer were investigated. An experiment with water and Rhodamine tracer dye was conducted in a shelterwood location to evaluate droplet deposition on Kromekote® card targets above and within a canopy of poplar saplings. Computer simulation of a free jet was used to model the airblast in order to investigate droplet trajectories. Measured deposits indicated that the effective swath width is 14 m from the blower outlet. Mean simulated droplet trajectory data were in good agreement with the droplet density data observed in the field. Both sets of results predicted a very low level of spray deposition beyond 14 m.  相似文献   
113.
Background Atrazine is a widely used herbicide, and its persistence in soil and water causes environmental concerns. In the past, plat uptake processes are mainly investigated for single contaminants. However, in many cases, contaminants co-exist in environmental matrix, such as soil, and plant uptake of one contaminant may be influenced by its co-existing ones.Methods The uptake of atrazine by rice seedlings (Oryza sativa L.) from nutrient solution through the roots was investigated in a solution culture, over an exposure period of 4 weeks. Atrazine accumulation in plant tissues was determined by gas chromatography, and lead was determined using atomic absorption spectrometry.Results and Discussion With different ratios of atrazine and Pb2+ concentrations in solution, the observed atrazine concentrations in shoots and roots varied significantly. In atrazine-Pb2+ mixture systems, the added Pb2+ either increased or decreased the concentrations or BCFs of atrazine in seedlings (relative to those without Pb2+), depending on the atrazine-Pb2+ ratio in nutrient solution. The enhanced atrazine uptake results presumably from atrazine-Pb2+ complex formation. The reduced atrazine uptake, which occurred mainly at high atrazine concentrations, is attributed to atrazine toxicity that inhibited seedling growth and transpiration. Conclusion The formation of atrazine-Pb2+ complex both in the solution and within plant tissues may affect the accumulation of both contaminants by rice plants.  相似文献   
114.
The soil dissipation of the widely used herbicides S-metolachlor(SM) and butachlor(BUT)was evaluated in laboratory microcosms at two environmentally relevant doses(15 and 150 μg/g) and for two agricultural soils(crop and paddy).Over 80% of SM and BUT were dissipated within 60 and 30 days,respectively,except in experiments with crop soil at 150 μg/g.Based on compound-specific isotope analysis(CSIA) and observed dissipation,biodegradation was the main process responsible for the observed decrease of SM and BUT in the paddy soil.For SM,biodegradation dominated over other dissipation processes,with changes of carbon isotope ratios(Δδ~(13)C) of up to 6.5‰ after 60 days,and concomitant production of ethane sulfonic acid(ESA) and oxanilic acid(OXA) transformation products.In crop soil experiments,biodegradation of SM occurred to a lesser extent than in paddy soil,and sorption was the main driver of apparent BUT dissipation.Sequencing of the 16 S rRNA gene showed that soil type and duration of herbicide exposure were the main determinants of bacterial community variation.In contrast,herbicide identity and spiking dose had no significant effect.In paddy soil experiments,a high(4:1,V/V) ESA to OXA ratio for SM was observed,and phylotypes assigned to anaerobic Clostridiales and sulfur reducers such as Desulfuromonadales and Syntrophobacterales were dominant for both herbicides.Crop soil microcosms,in contrast,were associated with a reverse,low(1:3,V/V)ratio of ESA to OXA for SM,and Alphaproteobacteria,Actinobacteria,and Bacillales dominated regardless of the herbicide.Our results emphasize the variability in the extent and modes of SM and BUT dissipation in agricultural soils,and in associated changes in bacterial communities.  相似文献   
115.
Imazethapyr (IM) is a widely used acetolactate synthase-inhibiting chiral herbicide. It has long-term residuals that may be absorbed by the human body through the edible parts of plants, such as vegetable leaves or fruits. Here, we selected a model plant, Arabidopsis thaliana, to determine the effects of R-IM and S-IM on its leaf structure, photosynthetic efficiency, and metabolites, as well as the structures of microorganisms in the phyllosphere, after 7 days of exposure. Our results indicated enantiomeric differences in plant growth between R-IM and S-IM; 133 µg/kg R-IM showed heavier inhibition of photosynthetic efficiency and greater changes to subcellular structure than S-IM. R-IM and S-IM also had different effects on metabolism and leaf microorganisms. S-IM mainly increased lipid compounds and decreased amino acids, while R-IM increased sugar accumulation. The relative abundance of Moraxellaceae human pathogenic bacteria was increased by R-IM treatment, indicating that R-IM treatment may increase leaf surface pathogenic bacteria. Our research provides a new perspective for evaluating the harmfulness of pesticide residues in soil, phyllosphere microbiome changes via the regulation of plant metabolism, and induced pathogenic bacterial accumulation risks.  相似文献   
116.
This article presents the development of a multiresidue method forthe estimation of 30 insecticides, 15 organochlorineinsecticides and 6 organophosphorus insecticides, 9 syntheticpyrethriods and 2 herbicides and their quantificationin vegetables. The monitoring study indicates that though allthe vegetable samples were contaminated with pesticides, only31% of the samples contained pesticides above the prescribedtolerance limit.  相似文献   
117.
The goals of this study were to: (1) measure atrazine and metolachlor concentrations during both high and low use periods in the Chesapeake Bay's mainstem/major tributaries, smaller tributaries and representative small agricultural streams during 1995 and 1996; (2) compare these exposure data with toxicity benchmarks for each herbicide to predict ecological risk and (3) use in-stream fish community data collected in the streams to provide supportive data for ecological risk characterization. Spatially, atrazine (<0.10–98 g/L) and metolachlor (<0.10–68 g/L) concentrations were highest in the streams, followed by the small tributaries (<0.10–11 g/L atrazine; <0.10–8.6 g/L metolachlor) with the lowest concentration in the mainstem Bay/larger tributaries (<0.10–0.22 g/L atrazine; <0.10–0.24 g/L metolachlor). Temporally, concentrations of both herbicides were greatest in all three types of habitats in the late spring and early summer. Concentrations of atrazine and metolachlor were very low or non-detectable in all habitats sampled from early August to mid-April. Toxicity benchmarks of 20 g/L for atrazine based on an ecological No Observed Effect Concentration (NOEC) for microcosm/mesocosm studies and an acute 10th percentile of 53 g/L for metolachlor (protection of ninety % of the species) based on laboratory toxicity data were selected to assess annual and seasonal ecological risk. Both of these toxicity benchmarks were conservative estimates of ecological risk designed to protect the trophic group (plants) most sensitive to these herbicides. Based on a comparison of these toxicity benchmarks with two years of exposure data, the ecological risk from both atrazine and metolachlor exposure in the mainstem Chesapeake Bay/large tributaries, small tributaries and representative agriculturally dominated streams was generally judged to be low. During one 72-h stream rain event in 1995, the atrazine toxicity benchmark (20 g/L) was exceeded during part of the event. However, long-term permanent ecological effects are not expected based on the documented recovery potential of the most sensitive trophic group (plant communities) to the concentrations of atrazine reported and the transient nature of the atrazine pulses. Fish communities at the stream sites receiving the highest concentrations of both herbicides were judged to be healthy based on an Index of Biotic Integrity (IBI) developed for Maryland's coastal plain.  相似文献   
118.
Adsorption of chloroacetanilide herbicides on homoionic montmorillonite, soil humic acid, and their mixtures was studied by coupling batch equilibration and FT-IR analysis. Adsorption isotherms of acetochlor, alachlor, metolachlor and propachlor on Ca2 + -, Mg2 + -. Al3 + -and Fe3 + -saturated clays were well described by the Freundlich equation. Regardless of the type of exchange cations, Kf decreased in the order of metolachlor > acetolachlor > alachlor > propachlor on the same clay. FT-IR spectra showed that the carbonyl group of the herbicide molecule was involved in binding, probably via H-bond with water molecules in the clay interlayer. The type and position of substitutions around the carbonyl group may have affected the electronegativity of oxygen, thus influencing the relative adsorption of these herbicides. For the same herbicide, adsorption on clay increased in the order of Mg2+ < Ca2+ < Al3+ ≤ Fe3+ which coincided with the iucreasing aciditv of homoionic clays. Acidity of cations may have affected the protonation of water, and thus the strength of H-bond between the clay water and herbicide. Complexation of clay and humic acid resulted in less adsorption than that expected from independent adsorption by the individual constituents. The effect varied with herbicides, but the greatest decrease in adsorption occurred at a 60:40 clay-to-humic acid ratio for all the herbicides. Causes for the decreased adsorption need to be characterized to better understand adsorption mechanisms and predict adsorption from soil compositions.  相似文献   
119.
四种除草剂对泥鳅红细胞遗传毒性的研究   总被引:13,自引:1,他引:13  
采用红细胞微核和核异常测试法,研究了除草剂精禾草克、氟乐灵、扫茀特,2-甲-4氯钠水剂对泥鳅红细胞核的遗传毒性.结果表明,4种除草剂单独作用时均不同程度地引起微核细胞率和核异常细胞率等遗传指标的上升(P<0.05或P<0.01). 低浓度的除草剂对泥鳅红细胞的联合诱变作用比高浓度的除草剂明显.除草剂浓度与微核率或核异常率无显著相关,不表现剂量-效应关系.扫茀特的诱变效应大于其它3种除草剂.4种除草剂联合作用时具拮抗性. 图1 表5 参20  相似文献   
120.
ABSTRACT: Several factors affect the occurrence and transport of pesticides in surface waters of the 29,400 km2 White River Basin in Indiana. A relationship was found between pesticide use and the average annual concentration of that pesticide in the White River, although this relationship varies for different classes of pesticides. About one percent of the mass applied of each of the commonly used agricultural herbicides was transported from the basin via the White River. Peak pesticide concentrations were typically highest in late spring or early summer and were associated with periods of runoff following application. Concentrations of diazinon were higher in an urban basin than in two agricultural basins, corresponding to the common use of this insecticide on lawns and gardens in urban areas. Concentrations of atrazine, a corn herbicide widely used in the White River Basin, were higher in an agricultural basin with permeable, well‐drained soils, than in an agricultural basin with less permeable, more poorly drained soils. Although use of butylate and cyanazine was comparable in the White River Basin between 1992 and 1994, concentrations in the White River of butylate, which is incorporated into soil, were substantially less than for cyanazine, which is typically applied to the soil surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号