首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1541篇
  免费   169篇
  国内免费   76篇
安全科学   395篇
废物处理   36篇
环保管理   436篇
综合类   590篇
基础理论   56篇
污染及防治   41篇
评价与监测   68篇
社会与环境   30篇
灾害及防治   134篇
  2024年   5篇
  2023年   22篇
  2022年   35篇
  2021年   51篇
  2020年   62篇
  2019年   30篇
  2018年   21篇
  2017年   53篇
  2016年   41篇
  2015年   48篇
  2014年   87篇
  2013年   88篇
  2012年   107篇
  2011年   95篇
  2010年   88篇
  2009年   84篇
  2008年   75篇
  2007年   102篇
  2006年   83篇
  2005年   88篇
  2004年   59篇
  2003年   65篇
  2002年   50篇
  2001年   46篇
  2000年   31篇
  1999年   33篇
  1998年   27篇
  1997年   29篇
  1996年   21篇
  1995年   19篇
  1994年   13篇
  1993年   9篇
  1992年   4篇
  1991年   12篇
  1990年   8篇
  1989年   11篇
  1988年   7篇
  1987年   17篇
  1986年   2篇
  1983年   5篇
  1982年   12篇
  1981年   8篇
  1980年   13篇
  1979年   9篇
  1978年   2篇
  1977年   1篇
  1976年   3篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
排序方式: 共有1786条查询结果,搜索用时 31 毫秒
141.
岩溶地基土洞塌陷评价及处理   总被引:1,自引:0,他引:1  
刘之葵  谢永雄 《灾害学》2007,22(3):77-80
地下水(地表水)产生的渗透潜蚀作用、崩解作用等是土洞形成和发展的重要原因。对工程实例中的土洞,采用极限平衡法和压力拱分析法进行了稳定性判别。在土洞中充填砼,然后采用压力灌浆,灌浆所采用的水灰比为1∶1~1∶1.5,灌浆压力一般为0.15~0.30 MPa,地基处理效果好。  相似文献   
142.
通过对国内外发电设备可靠性研究的分析,提出了我国发电设备可靠性研究大体经历了可靠性指标统计分析、传统可靠性模型分析以及电力市场下可靠性分析3个阶段。在比较各阶段研究特点的基础上,指出了建立发电设备可靠性成本与可靠性效益之间的平衡,设定反映二者关系的新的可靠性指标是电力市场下发电设备可靠性研究的新特点。笔者认为,所提出了数据挖掘技术,是发电设备可靠性管理实现实时化、智能化与预测化的一种有效方法。  相似文献   
143.
地铁在面对各种灾害时,各类防灾及应急设施的准备是否充分将直接影响到救援工作的质量。通过实地考察北京、日本(东京地铁车站为主)及韩国釜山城市的地铁车站防灾应急设施,探讨东京和釜山地铁与北京地铁应急设施的异同,并结合我国关于大型现代地铁枢纽站应急预案的研究,针对我国地铁在防灾应急设施方面存在的问题提出改进建议。  相似文献   
144.
本文介绍了目前我国的废气污染物种类及防治技术装备水平;分析了国内废气污染物防治技术的发展情况。  相似文献   
145.
In Korea due to rapid economical growth followed by urbanisation, breakage of large traditional families into small nuclear families, continuous changes in equipment features and capabilities causes tremendous increase in sale of new electrical and electronic equipment (EEE) and decrease in sale of used EEE. Subsequently, the ever-increasing quantity of waste electrical and electronic equipment (WEEE) has become a serious social problem and threat to the environment. Therefore, the gradual increase in the generation of WEEE intensifies the interest for recycling to conserve the resources and protect the environment. In view of the above, a review has been made related to the present status of the recycling of waste electrical and electronic equipment in Korea. This paper describes the present status of generation and recycling of waste electrical and electronic equipment, namely TVs, refrigerators, washing machines, air conditioners, personal computers and mobile phones in Korea. The commercial processes and the status of developing new technologies for the recycling of metallic values from waste printed circuit boards (PCBs) is also described briefly. Since 1998, three recycling centers are in full operation to recycle WEEE such as refrigerators, washing machines and air conditioners, having the total capacity of 880,000 units/year. All waste TVs are recently recycled on commission basis by several private recycling plants. The recycling of waste personal computers and mobile phones is insignificant in comparison with the amount of estimated obsolete those. Korea has adopted and enforced the extended producer responsibility (EPR) system. Korea is making consistent efforts to improve the recycling rate to the standards indicated in the EU directives for WEEE. Especially environmentally friendly and energy-saving technologies are being developed to recycle metal values from PCBs of WEEE.  相似文献   
146.
基于风险的检验(RBI)在国内合成氨装置中的应用   总被引:2,自引:0,他引:2  
利用API581基于风险的检验原理,采用RISKWISE分析软件对九江石化合成氨装置中的设备和管道进行了风险评估;并在装置采用的工艺、不同装置的设备和管道的失效机理和计算出的风险分布这3方面,将其风险评估结果与国内兄弟单位完成的其他合成氨装置的风险评估结果进行了比对;其结果体现了我国目前合成氨装置的设备和管道风险的大致分布,可供我国其他合成氨装置的风险评估参考,也为制定我国合成氨装置基于风险检验的法规标准提供了相关数据;同时,对国内采用针对装置的基于风险的检验的新模式进行了探讨。  相似文献   
147.
Abstract: Streams draining mountain headwater areas of the western Mojave Desert are commonly physically isolated from downstream hydrologic systems such as springs, playa lakes, wetlands, or larger streams and rivers by stream reaches that are dry much of the time. The physical isolation of surface flow in these streams may be broken for brief periods after rainfall or snowmelt when runoff is sufficient to allow flow along the entire stream reach. Despite the physical isolation of surface flow in these streams, they are an integral part of the hydrologic cycle. Water infiltrated from headwater streams moves through the unsaturated zone to recharge the underlying ground‐water system and eventually discharges to support springs, streamflow, isolated wetlands, or native vegetation. Water movement through thick unsaturated zones may require several hundred years and subsequent movement through the underlying ground‐water systems may require many thousands of years – contributing to the temporal isolation of mountain headwater streams.  相似文献   
148.
Abstract: The average annual base flow/recharge was determined for streamflow‐gaging stations throughout Wisconsin by base‐flow separation. A map of the State was prepared that shows the average annual base flow for the period 1970‐99 for watersheds at 118 gaging stations. Trend analysis was performed on 22 of the 118 streamflow‐gaging stations that had long‐term records, unregulated flow, and provided aerial coverage of the State. The analysis found that a statistically significant increasing trend was occurring for watersheds where the primary land use was agriculture. Most gaging stations where the land cover was forest had no significant trend. A method to estimate the average annual base flow at ungaged sites was developed by multiple‐regression analysis using basin characteristics. The equation with the lowest standard error of estimate, 9.5%, has drainage area, soil infiltration and base flow factor as independent variables. To determine the average annual base flow for smaller watersheds, estimates were made at low‐flow partial‐record stations in 3 of the 12 major river basins in Wisconsin. Regression equations were developed for each of the three major river basins using basin characteristics. Drainage area, soil infiltration, basin storage and base‐flow factor were the independent variables in the regression equations with the lowest standard error of estimate. The standard error of estimate ranged from 17% to 52% for the three river basins.  相似文献   
149.
Abstract: Previous investigations observed significant seepage losses from the Rio Grande to the shallow aquifer between Socorro and San Antonio, New Mexico. High‐resolution telescopic modeling was used along a 10‐km reach of the Rio Grande and associated drains and canals to evaluate several management alternatives aimed at improving river conveyance efficiency. Observed data consisted of ground‐water and surface‐water elevations, seepage rates along the Rio Grande and associated canals and drains, and borehole geology. Model calibration was achieved by adjusting hydraulic conductivity and specific storage until the output matched observed data. Sensitivity analyses indicated that the system was responsive to changes in hydrogeologic properties, especially when such alterations increased vertical connectivity between layers. The calibrated model predicted that removal of the low flow conveyance channel, a major channel draining the valley, would not only decrease river seepage by 67%, but also decrease total flow through the reach by 75%. The decreased flow through the reach would result in increased water logging and an average increase in ground‐water elevations of 1.21 meter. Simulations of the system with reduced riparian evapotranspiration rates or a relocated river channel also predicted decreased river seepage, but to a much lesser degree.  相似文献   
150.
ABSTRACT: The Phoenix metropolitan area has a unique combination of circumstances which makes it one of the prime areas in the Nation for waste water reuse. Overriding all of these conditions is the long-term inadequacy of the existing water supplies. The Salt River Valley has a ground water overdraft of about 700,000 acre feet per year. To help alleviate this situation, the Corps of Engineers in conjunction with the MAG 208 is looking at ways to reuse a projected 2020 waste water flow of 340,000 acre feet per year. Reuse options identified include ground water recharge, agricultural irrigation, turf irrigation, recreational lakes, fish and wildlife habitats, and industrial cooling. These look nice on paper but before they can be implemented, some hard questions have to be answered, such as: How acceptable are local treatment plants when 15 years ago there was a major push to eliminate local plants; is the Phoenix area ready for reuse in urban areas; what are people willing to pay for water; who benefits if a city goes to ground water recharge; how much agriculture will be left in the area by 2020? These and other questions must be resolved if reuse is to become a viable option in water resource planning in the Phoenix area. Summary. Large scale reuse of waste water conforms with the national goal of better resource management through recycling. The Phoenix metropolitan area has a unique combination of circumstances which makes it one of the prime areas in the nation for waste water reuse. Some of the most notable conditions are: the existence of a large and rapidly growing urban area which is in the process of planning for future waste water management systems; the existence of agricultural areas which are projected to be farmed well into the future, and the existence of constructed and planned major recreational systems such as Indian Bend Wash which can use recycled waste water; the existence of extensive depleted ground water aquifers; the need for a dependable source for the cooling of the Palo Verde Nuclear reactors; and finally, overriding all of this, the long-term inadequacy of the existing water supplies. Given this, one would expect to find total reuse within the Phoenix metropolitan area. Reuse is taking place with irrigation and nuclear power cooling to the west but there is no long term plan which looks at the Valley as a whole and considers waste water as part of the Valley's water resources. The Corps 208 plan is looking at waste water in this manner but initial analysis shows that although reuse is technically feasible there are many financial, social, institutional, and political questions still to be answered. These include: determining the value of existing diminishing water sources and what people are willing to pay for the next source of water; are people willing to identify priority uses of water for the area so that water of varying quality is put to its highest and best use; will the present institutional boundaries remain to create water-rich and water-poor areas; and will legislation be forthcoming to simplify the complex surface and ground water laws that presently exist? The Corps 208 study will not be able to answer these questions, but the goal at the moment is to identify feasible reuse systems along with decisions the public, owners, agencies, and politicians must make to select and implement them. If some sort of logical process is not developed and public awareness not increased, the chance for a long-term plan to utilize waste water as a major element in the Phoenix area water resource picture, may be missed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号