首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   232篇
  免费   21篇
  国内免费   137篇
安全科学   6篇
废物处理   11篇
环保管理   14篇
综合类   213篇
基础理论   66篇
污染及防治   24篇
评价与监测   20篇
社会与环境   34篇
灾害及防治   2篇
  2024年   1篇
  2023年   10篇
  2022年   18篇
  2021年   27篇
  2020年   21篇
  2019年   21篇
  2018年   11篇
  2017年   16篇
  2016年   16篇
  2015年   21篇
  2014年   12篇
  2013年   29篇
  2012年   12篇
  2011年   12篇
  2010年   14篇
  2009年   10篇
  2008年   13篇
  2007年   14篇
  2006年   16篇
  2005年   15篇
  2004年   11篇
  2003年   14篇
  2002年   11篇
  2001年   16篇
  2000年   7篇
  1999年   6篇
  1998年   4篇
  1997年   4篇
  1996年   5篇
  1991年   1篇
  1986年   1篇
  1984年   1篇
排序方式: 共有390条查询结果,搜索用时 15 毫秒
71.
利用2005-2019年OMI-OMAERUV L2气溶胶数据集,研究了近15年华中地区吸收性气溶胶指数(UVAI)的时空分布特征和主导气溶胶类型,探究下垫面变化和人为及气象因素的影响.结果表明:①在时间分布上,华中地区UVAI的年际变化整体呈波动上升趋势;2005-2008年UVAI波动下降,20092013年逐年增...  相似文献   
72.
伊洛河流域河水来源及水化学组成控制因素   总被引:15,自引:13,他引:2  
伊洛河是黄河中游南岸重要支流,由伊河和洛河在洛阳偃师汇合而成.流域上游矿产资源开采活动较多,下游城镇密集,工农业活动分布广泛.为探究不同类型人为活动对伊洛河流域河水水化学组成的影响,分别在丰水期(8月)和平水期(12月)采集伊洛河流域干流和支流河水样品,借助水体氢氧同位素组成和阴阳离子组成的时空分布特征,阐明水体来源以及水化学组成控制因素,说明人为活动的影响途径和方式.结果表明:①洛河干流河水丰水期和平水期δD和δ18O均值分别为-56‰和-7.9‰以及-55‰和-8.1‰,伊河干流河水丰水期和平水期δD和δ18O均值分别为-49‰和-6.9‰以及-53‰和-7.8‰,丰水期和平水期河水主要接受当地大气降水补给;②洛河及伊河干流河水水化学类型均为HCO3-SO4-Ca-Mg型,丰水期干流河水Ca2+和HCO-3当量浓度占比低于平水期,而丰水期SO42-当量浓度占比则高于平水期,显示丰水期较多...  相似文献   
73.
Long-term stationary investigations in permanent plots have been performed in forests of different types growing in Greater Moscow. Their results have made it possible to reveal the trends essential to the dynamics of these forests and make a prognosis of their condition in the near future. Moreover, they suggest that it is necessary to review some long-standing concepts concerning the processes of forest formation, relationships between the main forest species, etc.  相似文献   
74.
Arsenic contamination is of great environmental concern due to its toxic effects as a carcinogen. Knowledge of arsenic background concentrations is important for land application of wastes and for making remediation decisions. The soil clean-up target level for arsenic in Florida (0.8 and 3.7 mg kg−1 for residential and commercial areas, respectively) lies within the range of both background and analytical quantification limits. The objective of this study was to compare arsenic distribution in urban and non-urban areas of Florida. Approximately 440 urban and 448 non-urban Florida soil samples were compared. For urban areas, soil samples were collected from three land-use classes (residential, commercial and public land) in two cities, Gainesville and Miami. For the non-urban areas, samples were collected from relatively undisturbed non-inhabited areas. Arsenic concentrations varied greatly in Gainesville, ranging from 0.21 to approximately 660 mg kg−1 with a geometric mean (GM) of 0.40 mg kg−1, which were lower than Miami samples (ranging from 0.32 to 112 mg kg−1; GM=2.81 mg kg−1). Arsenic background concentrations in urban soils were significantly greater and showed greater variation than those from relatively undisturbed non-urban soils (GM=0.27 mg kg−1) in general.  相似文献   
75.
Free and associated bitumens were isolated by sequential extraction from Vlasina lake peat (SE Serbia) and were investigated in order to differentiate between oil pollution and natural bitumens. Four peat samples were collected at different depths, on a peat island. Gas chromatographic (GC) and gas chromatography/mass spectrometry (GC/MS) analysis revealed the presence of three markedly different bitumen fractions. Here we show that the free bitumens are representing the native peat bitumens. The two associated bitumens are mainly the products of bacterial rework of organic substance, which were then trapped by two differing mechanisms. The bitumens characteristics and association features exclude a contribution of oil pollution.Selected article from the Regional Symposium on Chemistry and Environment Krusevac, Serbia, June 2003, organised by Dr. Branimir Jovancicevic.  相似文献   
76.
Background, Aims and Scope Secondary inorganic aerosol (SIA), i.e. particulate sulphate (S(VI)), ammonium and nitrate (N(V)) is formed from gaseous precursors i.e., sulfur dioxide (S(IV)), ammonia and nitrogen oxides, in polluted air on the time-scale of hours to days. Besides particulate ammonium and nitrate, the respective gaseous species ammonia and nitric acid can be formed, too. SIA contributes significantly to elevated levels of respirable particulate matter in urban areas and in strongly anthropogenically influenced air in general. Methods The near-ground aerosol chemical composition was studied at two stationary sites in the vicinity of Berlin during a field campaign in summer 1998. By means of analysis of the wind field, two episodes were identified which allow to study changes within individual air masses during transport i.e., a Lagrangian type of experiment, with one station being upwind and the other downwind of the city. By reference to a passive tracer (Na+) and estimates on dry depositional losses, the influences of dispersion and mixing on concentration changes can be eliminated from the data analysis. Results and Discussion Chemical changes in N(-III), N(V) and S(VI) species were observed. SIA i.e., N(V) and S(VI), was formed from emissions in the city within a few hours. The significance of emissions in the city was furthermore confirmed by missing SIA formation in the case of transport around the city. For the two episodes, SIA formation rates could be derived, albeit not more precise than by an order of magnitude. N(V) formation rates were between 1.4 and 20 and between 1.9 and 59 % h-1 on the two days, respectively, and S(VI) formation rates were > 17 and > 10 % h-1. The area south of the city was identified as a source of ammonia. Conclusion The probability of occurrence of situations during which the downwind site (50 km downwind of Berlin) would be hit by an urban plume is > 7.4%. Furthermore, for the general case of rural areas in Germany it is estimated that for more than half of these there is a significant probability to be hit by an urban plume (> 8%). The S(VI) formation rates are higher than explainable by homogeneous gas-phase chemistry and suggest the involvement of heterogeneous reactions of aerosol particles. Recommendation and Outlook The possible contribution of heterogeneous processes to S(VI) formation should be addressed in laboratory studies. Measurements at more than two sites could improve the potential of Lagrangian field experiments for the quantification of atmospheric chemical transformations, if a second downwind site is chosen in such a way that, at least under particular stability conditions, measurements there are representative for the source area.  相似文献   
77.
The Canadian Acid Aerosol Measurement Program (CAAMP) was established in 1992 to gain a better understanding of the atmospheric behaviour of fine particle strong acidity (“acid aerosols”) and to facilitate an assessment of the potential health risks associated with acid aerosols and particles in general. During 1992. 1993 and 1994, annular denuder and filter measurements were taken at four sites in Ontario, two in Quebec, three in the Atlantic Provinces and one in the greater Vancouver area. Mean fine particle sulphate concentrations (SO42−) were highest in southern Ontario (annual average ranged from 40–70 nmol m−3), lowest at a site in the Vancouver area (average = 16 nmol m−3) and second lowest in rural Nova Scotia. However, mean fine particle strong acid concentrations (H+) were geographically different. The highest mean concentrations were at the east coast sites (annual average of up to 30 nmol m−3). Acidities were lower in areas where the fine particle acidity experienced greater neutralization from reaction with ammonia. This included the major urban centres (i.e. Toronto and Montréal) and areas with greater amounts of agricultural activity, as in rural southern Ontario. On average, ambient concentrations of fine and coarse particle mass were larger in the urban areas and also in areas where SO42− levels were higher. All the particle components were episodic. However, compared to SO42− and fine particles (PM2.5 or PM2.1, depending upon inlet design), episodes of H+ tended to be less frequent and of shorter duration, particularly in Ontario. Saint John, New Brunswick, had the highest mean annual H+ concentration, which was 30 nmol m−3. H+ episodes (24 h concentration > 100 nmol m−3) were also the most frequent at this location. The high levels in Saint John were partially due to local sulphur dioxide sources and heterogeneous chemistry occurring in fog, which, on average, led to a 50% enhancement in sulphate, relative to upwind conditions.There was a substantial amount of intersite correlation in the day to day variations in H+, SO42− , PM2.5 and PM10 (fine + coarse particles) concentrations, which is due to the influence of synoptic-scale meteorology and the relatively long atmospheric lifetime of fine particles. Sulphate was the most regionally homogenous species. Pearson correlation coefficients comparing SO42− between sites ranged from 0.6 to 0.9, depending on site separation and lag time. In many cases, particle episodes were observed to move across the entire eastern portion of Canada with about a two-day lag between the SO42− levels in southern Ontario and in southern Nova Scotia.  相似文献   
78.
This work describes the nitration of aromatics upon near-UV photolysis of nitrate and nitrite in aqueous solution and upon photocatalytic oxidation of nitrite in TiO2 suspensions. Phenol is used in this work as a model aromatic molecule and as a probe for *NO2/N2O4. The photoinduced nitration of phenol in aqueous systems occurs upon the reaction between phenol and *NO2 or N2O4, and is enhanced by the photocatalytic oxidation of nitrite to *NO2 by TiO2. Aromatic photonitration in the liquid phase can play a relevant role in the formation of nitroaromatics in natural waters and atmospheric hydrometeors, thus being a potential pathway for the condensed-phase nitration of aromatics. Furthermore, the photoinduced oxidation of nitrite to nitrogen dioxide suggests a completely new role for nitrite in natural waters and atmospheric aerosols.  相似文献   
79.
基于广州市2009,2000和1990年工业、交通、生活能源统计数据,通过能源清单法估算出广州市对应年份的人为热排放量,再通过在WRF模式中引入2009,2000和1990年的下垫面数据和人为热排放方案,对2005,2012和2017年广州市的3次持续高温过程进行模拟,从而评估不同年代人为热排放水平对广州市极端高温天气的影响.结果表明,模拟的2m气温较为准确,能合理模拟出城市地区的热岛效应,但对极端高温的模拟略有偏低,而引入人为热有助于改善模拟结果.在case2012中,2009,2000和1990年3种人为热排放水平使广州城市下垫面的平均气温分别上升0.53,0.44和0.13℃,热岛强度增强0.43,0.38和0.13℃.3个模拟个例的结果均表明,日间的人为热排放比夜间大,但夜间气温及热岛强度的变化比日间要明显.  相似文献   
80.
为探究湖北省人类净氮输入状况,本文基于湖北省14个地级市(省直辖县)行政单元统计数据,利用人类活动净氮输入(NANI)模型,核算湖北省2008~2017年的人类活动净氮输入量.结果表明,湖北省10a平均NANI值为15929.43kg/(km2·a).湖北总NANI值随时间呈现出先增长后下降的趋势,其中2013年达到16959.93kg/(km2·a).在空间分布上,湖北省中东部地区(襄阳、荆门、荆州、随州、孝感、武汉、鄂州、黄冈、省直辖县)的NANI值显著高于西部地区(十堰、宜昌、恩施自治州);氮源结构上,氮肥输入(年均贡献比例60.58%)是最大输入项,其次分别为食品/饲料净氮输入(24.85%)、生物固氮(8.16%)、大气氮沉降(6.25%)和种子氮输入(0.18%).因此,减少化肥投入,提高农业产出投入比,同时合理控制人口密度,是减少区域内净氮负荷量,降低氮素污染的有效措施.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号