首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10043篇
  免费   1327篇
  国内免费   5779篇
安全科学   1932篇
废物处理   302篇
环保管理   886篇
综合类   9293篇
基础理论   2202篇
环境理论   2篇
污染及防治   1453篇
评价与监测   423篇
社会与环境   351篇
灾害及防治   305篇
  2024年   55篇
  2023年   426篇
  2022年   646篇
  2021年   719篇
  2020年   689篇
  2019年   704篇
  2018年   564篇
  2017年   529篇
  2016年   598篇
  2015年   690篇
  2014年   601篇
  2013年   1072篇
  2012年   1069篇
  2011年   1135篇
  2010年   759篇
  2009年   897篇
  2008年   729篇
  2007年   868篇
  2006年   866篇
  2005年   630篇
  2004年   514篇
  2003年   432篇
  2002年   325篇
  2001年   290篇
  2000年   242篇
  1999年   187篇
  1998年   148篇
  1997年   139篇
  1996年   107篇
  1995年   115篇
  1994年   71篇
  1993年   74篇
  1992年   50篇
  1991年   22篇
  1990年   25篇
  1989年   20篇
  1988年   16篇
  1987年   6篇
  1986年   12篇
  1985年   4篇
  1984年   7篇
  1983年   11篇
  1982年   13篇
  1981年   10篇
  1980年   6篇
  1979年   4篇
  1978年   4篇
  1973年   5篇
  1972年   5篇
  1971年   33篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
671.
Background, aim, and scope  The enzyme-linked receptor assay (ELRA) detects estrogenic and anti-estrogenic effects at the molecular level of receptor binding and is a useful tool for the integrative assessment of ecotoxicological potentials caused by hormonally active agents (HAA) and endocrine disrupting compounds (EDC). The main advantage of the ELRA is its high sample throughput and its robustness against cytotoxicity and microbial contamination. After a methodological adaptation to salinity of the ELRA, according to the first part of this study, which increased its salinity tolerance and sensitivity for 17-β-estradiol, the optimised ELRA was used to investigate 13 native sediments characterised by different levels of salinity and chemical contamination. The applicability of the ELRA for routine analysis in environmental assessment was evaluated. Salinity is often a critical factor for bioassays in ecotoxicological sediment assessment. Therefore, salinity of the samples was additionally adjusted to different levels to characterise its influence on elution and binding processes of receptor-binding substances. Materials and methods  The ELRA was carried out with the human estrogen receptor α (ER) in a 96-well microplate format using the experimental setup known from the competitive immunoassay based on ligand–protein interaction. It is an important improvement that a physiologically relevant receptor was used as a linking protein instead of an antibody. The microplates were coated with a 17-β-estradiol-BSA conjugate, and dilution series of estradiol and of native sediment samples were added and incubated with the ER. After a washing step, a biotinylated mouse anti-ER antibody was added to each well. Receptor binding to estradiol, agonistic and antagonistic receptor binding, were determined by a streptavidin-POD-biotin complex with subsequent measurement of the peroxidase activity at the wavelength of 450 nm using a commercial ELISA multiplate reader. The sediment elutriates and pore water samples of sediments were tested in a dilution series to evaluate at which dilution step the receptor-binding potential ends. In the elution process (see Section 2.1 to 2.2), a method was developed to adjust the salinity to the levels of the reference testings, which offers an appropriate option to adjust the salinity in both directions. Statistical evaluation was made with a combination of the Mann–Whitney U test and the pT-method. Results  This part of the study characterised the environmental factor ‘salinity’ for prospective applications of the ELRA. Using reference substances such as 17-β-estradiol, the ELRA showed sigmoid concentration-effect relations over a broad range from 0.05 μg/l to 100 μg/l under physiological conditions. After methodological optimisation, both sensitivity and tolerance of the assay against salinity could be significantly raised, and the ELRA became applicable under salinity conditions up to concentrations of 20.5‰. The mean relative inter-test error (n = 3) was around 11% with reference substances and below 5% for single sediments elutriates in three replicates each. For sediment testings, the pore water and different salinity-adjusted elutriates of 13 sediments were used. A clear differentiation of the receptor-binding potential could be reached by application of the pT-method. Thereby, pT-values from one to six could be assigned to the sediments, and the deviation caused by the different salinity conditions was one pT-value. The mean standard deviation in the salinity adaptation procedure of the elutriates was below 5%. Discussion  Although the ELRA has already been used for assessments of wastewater, sludge and soil, its applicability for samples to different salinity levels has not been investigated so far. Even if the ELRA is not as sensitive as the E-screen or the YES-assay, with regard to reference substances like 17-β-estradiol, it is a very useful tool for pre-screening, because it is able to integrate both estrogenic as well as anti-estrogenic receptor-binding effects. According to the results of sediment testing, and given the integrative power to detect different directions of effects, the ELRA shows sufficient sensitivity and salinity tolerance to discriminate receptor-binding potentials in environmental samples. Conclusions  The optimised ELRA assay is a fast, cost-effective, reliable and highly reproducible tool that can be used for high-throughput screening in a microplate format in detecting both estrogenic and anti-estrogenic effects. Additionally, the ELRA is robust against microbial contaminations, and is not susceptible towards cytotoxic interferences like the common cell-culture methods. The general applicability and sufficient sensitivity of the ELRA was shown in freshwater environments. Marine and brackish samples can be measured up to salinity levels of 20.5‰. Recommendations and perspectives  In view of the proven sensitivity, functionality and the fastness of the ELRA, it is recommendable to standardise the test method. At the moment, no adequate in vitro test procedure exists which is standardised to DIN or ISO levels. The E-screen and the yeast estrogen/androgen screens (YES/YAS) sometimes underlie strong cytotoxic effects, as reported in the first part of this study. Further development of an ELRA assay using human androgen receptors appears to be very promising to gain information about androgenic and anti-androgenic effects, too. This would offer a possibility to use the ELRA as a fast and reliable pre-screening tool for the detection of endocrine potentials, thus minimising time and cost-expensive animal experiments.  相似文献   
672.
Background, aim, and scope  Ionic liquids are regarded as essentially “green” chemicals because of their insignificant vapor pressure and, hence, are a good alternative to the emissions of toxic conventional volatile solvents. Not only because of their attractive industrial applications, but also due to their very high stability, ionic liquids could soon become persistent contaminants of technological wastewaters and, moreover, break through into natural waters following classical treatment systems. The removal of harmful organic pollutants has forced the development of new methodologies known as advanced oxidation processes (AOPs). Among them, the Fenton and Fenton-like reactions are usually modified by the use of a higher hydrogen peroxide concentration and through different catalysts. The aim of this study was to assess the effect of hydrogen peroxide concentration on degradation rates in a Fenton-like system of alkylimidazolium ionic liquids with alkyl chains of varying length and 3-methyl-N-butylpyridinium chloride. Materials and methods  The ionic liquids were oxidized in dilute aqueous solution in the presence of two different concentrations of hydrogen peroxide. All reactions were performed in the dark to prevent photoreduction of Fe(III). The concentrations of ionic liquids during the process were monitored with high-performance liquid chromatography. Preliminary degradation pathways were studied with the aid of 1H NMR. Results  Degradation of ionic liquids in this system was quite effective. Increasing the H2O2 concentration from 100 to 400 mM improved ionic liquid degradation from 57–84% to 87–100% after 60 min reaction time. Resistance to degradation was weaker, the shorter the alkyl chain. Discussion  The compound omimCl was more resistant to oxidation then other compounds, which suggests that the oxidation rates of imidazolium ionic liquids by OH· are structure-dependent and are correlated with the n-alkyl chain length substituted at the N-1-position. The level of degradation was dependent on the type of head group. Replacing the imidazolium head group with pyridinium increased resistance to degradation. Nonetheless, lengthening the alkyl chain from four to eight carbons lowered the rate of ionic liquid degradation to a greater extent than changing the head group from imidazolium to pyridinium. 1H-NMR spectra show, in the first stage of degradation, that it is likely that radical attack is nonspecific, with any one of the carbon atoms in the ring and the n-alkyl chain being susceptible to attack. Conclusions  The proposed method has proven to be an efficient and reliable method for the degradation of imidazolium ionic liquids by a Fenton-like reagent deteriorated with lengthening n-alkyl substituents and by replacing the imidazolium head group with pyridinium. The enhanced resistance of 1-butyl-3-methylpyridinium chloride when the resistance of imidazolium ionic liquids decreases with increasing H2O2 concentration is probably indicative of a change in the degradation mechanism in a vigorous Fenton-like system. H-NMR spectra showed, in the first stage of degradation, that radical attack is nonspecific, with any one of the carbon atoms in the ring and the n-alkyl chain being susceptible to attack. Recommendations and perspectives  Since ionic liquids are now one of the most promising alternative chemicals of the future, the degradation and waste management studies should be integrated into a general development research of these chemicals. In the case of imidazolium and pyridinium ionic liquids that are known to be resistant to bio- or thermal degradation, studies in the field of AOPs should assist the future structural design as well as tailor the technological process of these chemicals  相似文献   
673.
The present study deals with the application of self-organizing maps (SOM) in order to model, classify and interpret seasonal and spatial variability of 210Po, 238U and 239+240Pu levels in the Vistula river basin. The data set represents concentration values for 3 alpha emitters (210Po, 238U and 239+240Pu) measured in surface water samples collected at 19 different sampling locations (8 in major Vistula stream while 11 in right or left Vistula tributaries) during four seasons (winter, spring, summer and autumn) in the framework of a one-year quality monitoring study. The advantages of an SOM algorithm, its classification and visualization ability for environmental data sets, are stressed. The neural-network based classification made it possible to reveal specific patterns related to both seasonal and spatial variability. In the middle and upper part of Vistula catchment as well as in the right-shore tributaries, concentrations of 210Po and 238U during summer and winter are the lowest. Concentrations of 210Po and 238U increase significantly during spring and autumn in the Vistula river catchment, especially in the delta of Vistula river. High concentration of anthropogenic originated 239+240Pu indicates “site-specific” character of pollution in two large left-shore tributaries located in the middle part of the Vistula drainage area. Efficient classification of sampling locations could lead to an optimization of river radiochemical sampling networks and to a better tracing of natural and anthropogenic changes along Vistula river stream.  相似文献   
674.
At a former wood preservation plant severely contaminated with coal tar oil, in situ bulk attenuation and biodegradation rate constants for several monoaromatic (BTEX) and polyaromatic hydrocarbons (PAH) were determined using (1) classical first order decay models, (2) Michaelis–Menten degradation kinetics (MM), and (3) stable carbon isotopes, for o-xylene and naphthalene. The first order bulk attenuation rate constant for o-xylene was calculated to be 0.0025 d− 1 and a novel stable isotope-based first order model, which also accounted for the respective redox conditions, resulted in a slightly smaller biodegradation rate constant of 0.0019 d− 1. Based on MM-kinetics, the o-xylene concentration decreased with a maximum rate of kmax = 0.1 µg/L/d. The bulk attenuation rate constant of naphthalene retrieved from the classical first order decay model was 0.0038 d− 1. The stable isotope-based biodegradation rate constant of 0.0027 d− 1 was smaller in the reduced zone, while residual naphthalene in the oxic part of the plume further downgradient was degraded at a higher rate of 0.0038 d− 1. With MM-kinetics a maximum degradation rate of kmax = 12 µg/L/d was determined. Although best fits were obtained by MM-kinetics, we consider the carbon stable isotope-based approach more appropriate as it is specific for biodegradation (not overall attenuation) and at the same time accounts for the dominant electron-accepting process. For o-xylene a field based isotope enrichment factor εfield of − 1.4 could be determined using the Rayleigh model, which closely matched values from laboratory studies of o-xylene degradation under sulfate-reducing conditions.  相似文献   
675.
Reducing the transfer of contaminants from soils to plants is a promising approach to produce safe agricultural products grown on contaminated soils. In this study, 0-400 mg/kg cetyltrimethylammonium bromide (CTMAB) and dodecylpyridinium bromide (DDPB) were separately utilized to enhance the sorption of PAHs onto soils, thereby reducing the transfer of PAHs from soil to soil solution and subsequently to plants. Concentrations of phenanthrene and pyrene in vegetables grown in contaminated soils treated with the cationic surfactants were lower than those grown in the surfactant-free control. The maximum reductions of phenanthrene and pyrene were 66% and 51% for chrysanthemum (Chrysanthemum coronarium L.), 62% and 71% for cabbage (Brassica campestris L.), and 34% and 53% for lettuce (Lactuca sativa L.), respectively. Considering the impacts of cationic surfactants on plant growth and soil microbial activity, CTMAB was more appropriate to employ, and the most effective dose was 100-200 mg/kg.  相似文献   
676.
通过恒温振荡平衡法研究了Pb~(2+)在针铁矿上的等温吸附和吸附动力学特征,探讨了吸附的影响因素.结果表明:(1)随Pb~(2+)平衡浓度和pH的增大,针铁矿对Pb~(2+)的吸附量逐渐增大.(2)针铁矿对Pb~(2+)的等温吸附可用Freundlich和Langmuir方程较好地拟合.(3)在相同温度和pH下,随离子强度的提高,针铁矿对Pb~(2+)的吸附量增大.(4)在相同离子强度和pH下,针铁矿对Pb~(2+)的吸附量总体随温度升高而增大.针铁矿对Pb~(2+)的吸附是自发进行的吸热反应.(5)针铁矿吸附Pb~(2+)的过程可分为初始的快吸附和随后的慢吸附2个阶段.pH影响吸附反应快慢,随pH增大吸附速率增大;随着pH的增大,达到平衡吸附的时间缩短.吸附动力学方程用Elovich方程拟合最佳.  相似文献   
677.
以传统卫生填埋柱R2为对照,通过往生物反应器填埋柱R1内加载可渗透反应介质层1和2进行模拟试验,主要探讨了填埋柱R1垃圾渗滤液COD、总氮、氨氮及总磷的变化趋势,探索一种新型的加载介质层垃圾填埋处理方法。试验结果表明,填埋20周后, R1柱COD浓度基本维持在40 000~45 000 mg/L间,约为R2柱的20%~30%;第24周,R1柱总氮和氨氮分别为206.5 mg/L和167.3 mg/L,在16~24周内,R1总氮和氨氮分别约为R2的14.5%~17.5%和36.2%~43.6%;18周时,R1柱总磷达最大值1.704 mg/L,至第24周降为0.673 mg/L, 整个实验过程R1柱总磷约为R2的0.15%~0.56%。  相似文献   
678.
高锰酸钾降解地下水中PCE的研究   总被引:2,自引:1,他引:1  
田璐  杨琦  尚海涛 《环境工程学报》2009,3(8):1355-1359
以氯代有机污染物中常见的PCE为目标污染物,以自制高锰酸钾溶液为氧化剂,采用批实验方法,探讨了高锰酸钾降解PCE的反应动力学、影响因素以及反应机理。反应结果表明,高锰酸钾降解PCE的反应符合一级动力学方程,反应活化能E为57.119 kJ/mol,在30℃条件下,反应速率常数为0.0076 min-1,半衰期为91.20 min。在pH在3~10,离子强度在0~0.1030 mol/L之间变化时,反应速率不受明显影响。  相似文献   
679.
超细粉煤灰基成型吸附剂的动态吸附实验   总被引:2,自引:1,他引:1  
以粉煤灰为原料制备成型吸附剂,对水溶液中亚甲基蓝和Cr6+进行动态吸附研究,绘制穿透曲线,利用Origin软件对实验数据分析处理,得出穿透曲线的通式Ct=A1A2〖〗1+(t/t0)p+A1。结果表明,初始浓度C0=25 mg/L,填料高度不同时,达到穿透点的时间随填料高度的增加而增加;填料高度h=200 mm,初始浓度不同时,达到穿透点的时间随初始浓度的增加而减小;该吸附剂对有机染料和重金属离子均有较好的吸附性能;穿透曲线通式的回归线性相关系数表明,该通式可很好地反映超细粉煤灰成型吸附剂的动态吸附过程。  相似文献   
680.
厌氧序批式反应器内挥发性脂肪酸积累特性研究   总被引:1,自引:0,他引:1  
小试规模的厌氧序批式反应器(ASBR),通过人工配水,研究了启动3个月时间以及一个运行周期内反应器内挥发性脂肪酸(VFA)的积累情况,并通过分析期间产甲烷活性的变化说明了控制VFA积累的重要性。经过近120 d的运行,乙酸和丙酸的最大比产甲烷活性分别提高了1.8和2.2倍,说明反应器的启动过程即是微生物群落的优化和选择的过程,ASBR的抗冲击的能力较强说明随启动的进行和种群的优化,活性污泥凝聚性能增强,对VFA的降解能力增强。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号