全文获取类型
收费全文 | 1249篇 |
免费 | 150篇 |
国内免费 | 1161篇 |
专业分类
安全科学 | 76篇 |
废物处理 | 48篇 |
环保管理 | 98篇 |
综合类 | 1547篇 |
基础理论 | 350篇 |
污染及防治 | 360篇 |
评价与监测 | 53篇 |
社会与环境 | 10篇 |
灾害及防治 | 18篇 |
出版年
2024年 | 11篇 |
2023年 | 60篇 |
2022年 | 93篇 |
2021年 | 115篇 |
2020年 | 112篇 |
2019年 | 120篇 |
2018年 | 97篇 |
2017年 | 100篇 |
2016年 | 114篇 |
2015年 | 105篇 |
2014年 | 121篇 |
2013年 | 163篇 |
2012年 | 115篇 |
2011年 | 149篇 |
2010年 | 103篇 |
2009年 | 144篇 |
2008年 | 92篇 |
2007年 | 117篇 |
2006年 | 106篇 |
2005年 | 76篇 |
2004年 | 63篇 |
2003年 | 75篇 |
2002年 | 49篇 |
2001年 | 41篇 |
2000年 | 41篇 |
1999年 | 40篇 |
1998年 | 25篇 |
1997年 | 21篇 |
1996年 | 15篇 |
1995年 | 25篇 |
1994年 | 8篇 |
1993年 | 16篇 |
1992年 | 6篇 |
1991年 | 3篇 |
1990年 | 4篇 |
1987年 | 3篇 |
1986年 | 3篇 |
1981年 | 2篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1978年 | 1篇 |
1977年 | 1篇 |
1975年 | 1篇 |
1974年 | 1篇 |
1973年 | 1篇 |
排序方式: 共有2560条查询结果,搜索用时 14 毫秒
21.
pH、盐度对微生物还原硫酸盐的影响研究 总被引:1,自引:1,他引:1
采用厌氧生物处理工艺,研究了在不同盐度下pH连续降低对硫酸盐还原和有机物去除率的影响。实验结果表明,硫酸盐还原菌有很强的适应pH变化的能力,在pH值达到4以下仍有60%的硫酸盐去除率。NaCl浓度由4g/L增加到50g/L抑制了各厌氧菌的活性,导致硫酸盐和有机物去除率的下降,但硫酸盐还原菌耐受性高于产甲烷菌等其他厌氧菌,在NaCl浓度为50g/L下,硫酸盐去除率能达到50%,而有机物去除率则低于30%。qRT—PCR表明了系统菌落中SRB随着环境的变化情况与化学指标结果相一致,该反应器体系中SRB在整个厌氧菌群落中只占了很小部分。 相似文献
22.
采用产酸脱硫反应器进行连续流试验并配合静态试验 ,从群体生态学角度考察限制性生态因子———COD SO2 -4 比、硫酸盐负荷率 (Ns)、pH值、氧化还原电位 (ORP)和碱度 (ALK)的定量化对产酸脱硫生态系统的影响 .提出COD SO2 -4 比大于2 0 ,Ns 小于 7 5kg(SO2 -4 ) (m3·d) ,pH =6 0— 6 2 ,ORP =- 32 0— - 42 0mV ,ALK =15 0 0— 2 0 0 0mg L是维持硫酸盐还原菌(SRB)较高活性和生态系统稳定性的标志 ,硫酸盐去除率可达 80 %— 90 % 相似文献
23.
西安市秋冬季市区与山区微生物气溶胶组成特征及来源 总被引:1,自引:3,他引:1
为探究城市市区与山区微生物气溶胶组成特征及来源,在西安市市区(城区和郊区)及南郊山区设立3个采样点,采集细颗粒物、土壤及叶片样本.通过高通量测序法,解析不同采样点真菌与细菌群落结构,考察其时空变化特征;使用Source Track源解析技术对空气中微生物进行来源分析.结果表明,不同采样点真菌、细菌菌属差异较大,说明地理位置对空气中微生物的群落结构影响显著;冬季市区检测出较多的潜在真菌致病菌和细菌致病菌,且具有较高的相对丰度和多样性.通过源解析技术发现,在局部源叶片和土壤中,叶片表面微生物是空气中微生物的主要潜在源,且秋季叶片对空气中微生物的贡献率高于冬季.本研究不仅为空气中生物气溶胶的溯源研究提供了一定基础,也为深入了解大气中微生物污染特性和为我国空气环境质量评价与疾病预防提供一定的科学依据. 相似文献
24.
采用光合细菌球形红细菌(Rhodobacter sphaeroides)在厌氧光照条件下对氯代苯进行生物降解.结果表明,氯代苯不能作为球形红细菌生长的唯一碳源和能源.球形红细菌厌氧降解氯代苯是在适宜碳源存在下,由氯代苯诱导产生诱导酶以共代谢的方式进行,降解途径是先打开苯环生成小分子的氯代烷烃、再还原脱氯.在培养基中加入一定量的酵母膏,可使细菌生长的停滞期明显缩短,提高氯代苯的脱氯率.在氯代苯浓度为100mg/L时,厌氧降解的最适宜条件为苹果酸浓度1.0g/L、硫酸铵浓度0.1g/L、pH7.0、酵母浸膏浓度1.0g/L. 相似文献
25.
利用下向流生物流化床反应器研究了生物膜在硝化过程中亚硝酸积累现象.结果表明,挂膜后反应器运行初期出现亚硝酸积累,但氨氮去除率仍可达到97%.随着硝酸菌的适应与增殖,出水中硝化产物以硝酸为主.进水氨氮浓度提高至200mg/L以上时,再次出现亚硝酸积累.在144mg/L和222mg/L进水浓度下,水力停留时间缩短到5h以下,则氨氮去除率下降且出水中亚硝酸所占比例明显上升;容积负荷提高到0.95kgNH4+N/(m3·d)后也会如此反应器中DO降低到0.5~1mg/L会造成亚硝酸积累和氨氮去除率下降.硝化菌适应低氧环境后对氨氮的去除率仍能恢复到85%,但亚硝酸仍积累,这时生物膜中亚硝酸菌成为优势菌.本文还对影响亚硝酸积累的不同因素进行了分析. 相似文献
26.
采用臭氧氧化—包埋菌流化床生物处理组合工艺对煤气化废水进行深度处理。实验结果表明:当臭氧的质量浓度20 mg/L、臭氧进气流量1.5 L/min、臭氧通气时间30 min、包埋菌流化床水力停留时间24 h时,臭氧氧化工序的COD去除率达到30.0%~40.0%,总酚去除率达到100.0%;包埋菌流化床工序的COD去除率达到60.0%以上,氨氮的去除率大于95.0%;经组合工艺处理后,出水COD<60 mg/L,ρ(氨氮)<1.0 mg/L,ρ(总酚)未检出,色度小于50倍,达到GB8978—1996《污水综合排放标准》中的一级排放标准。 相似文献
27.
密云水库底泥和库滨区土壤中氨氧化细菌的多样性和丰度 总被引:1,自引:1,他引:1
采用分子生物学方法(T-RFLP、定量PCR)研究了密云水库底泥沉积物和库滨带土壤中氨氧化细菌(AOB)的多样性和丰度特征,并使用Canoco for Windows 4.5软件和皮尔森相关系数法,探究了环境因子对AOB群落的影响.结果表明,沉积物和库滨区土壤中AOB的多样性和数量都存在较大的差异.其中,AOB群落被聚成两大类:沉积物与土壤.沉积物样品中AOB群落结构与其它样品差异较大.沉积物中AOB的多样指数最低,而在农田土壤中AOB多样性指数最高.农田土壤中的amoA基因拷贝数最大,是底泥沉积物中的48倍.此外,RDA(Redundancy Analysis)分析表明,在沉积物和水陆交错带土壤中,AOB的优势种与NH4+-N、NO3--N、TOC、pH成正相关关系,而在陆相土壤和农田土壤中,AOB的优势种与这些环境因子成负相关关系.其中,TOC是影响AOB的群落结构的关键理化因子. 相似文献
28.
长期储存亚硝化颗粒污泥的活化及菌群结构变化 总被引:2,自引:0,他引:2
采用无机人工配水,通过逐级提高进水氨氮负荷(0.32~0.64kg/(m3·d))和设定合适的初始游离氨浓度(3.7~7.2mg/L),在SBR反应器中对常温(24~29℃)下储存1a的亚硝化颗粒污泥(NGS)进行了活化,并使用Miseq高通量测序技术分析了污泥中微生物多样性的变化情况.结果表明,NGS的亚硝化性能可在短时间内恢复.运行8d后,反应器的氨氮去除率达到95%以上,亚硝态氮累积率超过了80%,但污泥粒径持续减小,胞外聚合物(EPS)含量明显降低.活化至第20d,NGS的氨氮比去除速率和亚硝态氮比累积速率分别达到24.6mg/(gVSS·h)、23.8mg/(gVSS·h),平均粒径稳定在0.5mm左右.在活化期间,绝大部分厌氧、异养菌属被洗脱,污泥的微生物多样性显著降低.Nitrosomonas等氨氧化菌的相对丰度由活化前的1%上升至约58%,同时,Nitrospira等硝化菌的生长受到了选择性抑制.这意味着即使经历长期的常温储存,NGS仍可作为SBR的接种污泥,实现反应器的快速启动. 相似文献
29.
采用反硝化菌对烟气中Hg~0、Hg~(2+)的吸附特性进行研究,反硝化菌对Hg~0和Hg~(2+)吸附性能良好,在pH为8、初始Hg~0(Hg~(2+))浓度为95.7μg·m-3(0.4μg·L-1)和吸附剂用量为0.35 g·L-1时,Hg~0和Hg~(2+)的吸附效率分别达到43.01%和98.12%.反硝化菌吸附Hg~0的过程遵循拟一级动力学,符合Langmuir等温吸附模型,最大吸附容量为126.1μg·g-1.反硝化菌吸附Hg~(2+)遵循拟二级动力学模型,符合Langmuir等温吸附模型,最大吸附容量为36.23μg·g-1.采用傅里叶红外光谱(FTIR)和热场发射环境扫描电镜-能谱电子背散射衍射系统(EDS)表征吸附前后的反硝化菌,结果表明吸附过程中细菌表面的糖环、磷酸及脂肪化合物基团发挥了吸附汞作用. 相似文献
30.
东湖氮循环细菌分布及其作用 总被引:20,自引:1,他引:20
用最大可能数法测定东湖不同水期水体及底泥中亚硝化、硝化、反硝化和氨化细菌的分布,并分析其作用.结果表明,水体中亚硝化菌的最大可能数丰水期最高,平水期居中,枯水期最小;硝化菌丰水期小于其他2期,而反硝化、氮化细菌均是平水期最高、丰水期次之,枯水期最小.底泥中亚硝化菌n(MPN)丰水期高于另2期,硝化菌枯水期最高,而反硝化菌枯水期低于其它2水期,氮化细菌无差别.对比水相、泥相发现,亚硝化菌丰水期、枯水期泥相均大于水相(p<0.01),平水期无差别.硝化菌在平水、丰水2期的水相中占优势,枯水期差别不大反硝化菌n(MPN)仅在平水期泥相占优势,氨化细菌2相中无差别.氮循环细菌的分布及微环境的差异,促进了有机氮的分解、氮态氮的硝化和挥发及硝酸盐的反硝化作用.研究还发现,水体、底泥中反硝化细菌和氨化细菌1g[n(MPN)]与其气体截流量之间有显著相关(p<0.001),且不同水期产气量不同(p<0.05),表明氨化作用和反硝化作用随水期变化较大.氨化作用可将有机氮转化为铵和氨,促进水体及底泥中的氮以气态氨的形式挥发;反硝化作用将硝酸盐转化为N2O、N2,促进氮素释放. 相似文献