全文获取类型
收费全文 | 1249篇 |
免费 | 150篇 |
国内免费 | 1161篇 |
专业分类
安全科学 | 76篇 |
废物处理 | 48篇 |
环保管理 | 98篇 |
综合类 | 1547篇 |
基础理论 | 350篇 |
污染及防治 | 360篇 |
评价与监测 | 53篇 |
社会与环境 | 10篇 |
灾害及防治 | 18篇 |
出版年
2024年 | 11篇 |
2023年 | 60篇 |
2022年 | 93篇 |
2021年 | 115篇 |
2020年 | 112篇 |
2019年 | 120篇 |
2018年 | 97篇 |
2017年 | 100篇 |
2016年 | 114篇 |
2015年 | 105篇 |
2014年 | 121篇 |
2013年 | 163篇 |
2012年 | 115篇 |
2011年 | 149篇 |
2010年 | 103篇 |
2009年 | 144篇 |
2008年 | 92篇 |
2007年 | 117篇 |
2006年 | 106篇 |
2005年 | 76篇 |
2004年 | 63篇 |
2003年 | 75篇 |
2002年 | 49篇 |
2001年 | 41篇 |
2000年 | 41篇 |
1999年 | 40篇 |
1998年 | 25篇 |
1997年 | 21篇 |
1996年 | 15篇 |
1995年 | 25篇 |
1994年 | 8篇 |
1993年 | 16篇 |
1992年 | 6篇 |
1991年 | 3篇 |
1990年 | 4篇 |
1987年 | 3篇 |
1986年 | 3篇 |
1981年 | 2篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1978年 | 1篇 |
1977年 | 1篇 |
1975年 | 1篇 |
1974年 | 1篇 |
1973年 | 1篇 |
排序方式: 共有2560条查询结果,搜索用时 40 毫秒
401.
SBR法处理炼油废水的研究 总被引:6,自引:0,他引:6
研究了SBR(程序间歇式活性污泥)法处理炼油废水的最佳工艺条件和除氮效果,以及投菌SBR法处理炼油废水中污染物的效果。确定了SBR法处理炼油废水最佳反应温度为25℃-40℃,pH值为6.0-8.5,反应时间为8-12h,活性污泥浓度为2000-4000mg/L。当反应期内好氧曝气和缺氧搅拌交替进行3-4次,脱氧率可以达到90%以上。将实验室筛选得到的除油菌投加于BR复合生物反应器中处理炼油厂隔油池出水,废水中各种污染物的去除率分别为:COD93.5%,石油类98.6%,总氮89.8%。 相似文献
402.
硫化物生物氧化脱硫技术研究现状 总被引:4,自引:0,他引:4
介绍了近年来国内外硫化物生物氧化为单质硫的各种脱硫技术.分析总结了硫化物生物氧化为单质硫工艺的各种影响因素,包括氧硫比、溶解氧浓度、硫化物浓度、化学氧化、微生物菌种、pH值、温度等因素.提出了生物氧化脱硫技术的发展前景.该技术将脱硫和单质硫的回收和为一体,是一种安全、低成本将含硫废液变废为宝的工艺技术. 相似文献
403.
抗生素抗性异养细菌在不同水体中的生态分布研究 总被引:1,自引:0,他引:1
比较了城市污水处理厂曝气池混合液、鱼塘养殖水和黄河引灌水3种水体中可培养异养细菌总数、不同抗生素抗性菌群比例以及抗性有色异养细菌的比例.3种水体中可培养异养细菌总数分别达到2.8×107、1.2×107和8.9×105CFU/mL,其中,污水处理厂曝气池混合液中青霉素、红霉素和链霉素抗性比例最高,分别达到84.5%、66.1%和62.5%,明显高于另外2种水体中抗性比例,而且在该水体中检测到了102~104CFU/mL对青霉素、链霉素和庆大霉素不同组合的交叉抗性菌群.另外,在所有含抗生素的培养基平板上,有色菌群(黄色和红色)的比例都明显高于相应的未加抗生素的培养基平板,说明抗生素抗性与细菌的色素积累呈正相关,其中,黄河引灌水中的抗性有色异养菌群的比例高于其他2种水体. 相似文献
404.
Diversity of antibiotic resistance genes and encoding ribosomal protection proteins gene in livestock waste polluted environment 总被引:1,自引:0,他引:1
Chunyan Li Cheng Jiang Zhiyang Wu Xuejiao An Hailan Wang 《Journal of environmental science and health. Part. B》2018,53(7):423-433
The rapid development and increase of antibiotic resistance are global phenomena resulting from the extensive use of antibiotics in human clinics and animal feeding operations. Antibiotics can promote the occurrence of antibiotic resistance genes (ARGs), which can be transferred horizontally to humans and animals through water and the food chain. In this study, the presence and abundance of ARGs in livestock waste was monitored by quantitative PCR. A diverse set of bacteria and tetracycline resistance genes encoding ribosomal protection proteins (RPPs) from three livestock farms and a river were analyzed through denaturing gradient gel electrophoresis (DGGE). The abundance of sul(I) was 103 to 105 orders of magnitude higher than that of sul(II). Among 11 tet-ARGs, the most abundant was tet(O). The results regarding bacterial diversity indicated that the presence of antibiotics might have an evident impact on bacterial diversity at every site, particularly at the investigated swine producer. The effect of livestock waste on the bacterial diversity of soil was stronger than that of water. Furthermore, a sequencing analysis showed that tet(M) exhibited two genotypes, while the other RPPs-encoding genes exhibited at least three genotypes. This study showed that various ARGs and RPPs-encoding genes are particularly widespread among livestock. 相似文献
405.
Kenneth E. Hyer Douglas L. Mayer 《Journal of the American Water Resources Association》2004,40(6):1511-1526
ABSTRACT: Surface water impairment by fecal coliform bacteria is a water quality issue of national scope and importance. In Virginia, more than 400 stream and river segments are on the Commonwealth's 2002 303(d) list because of fecal coliform impairment. Total maximum daily loads (TMDLs) will be developed for most of these listed streams and rivers. Information regarding the major fecal coliform sources that impair surface water quality would enhance the development of effective watershed models and improve TMDLs. Bacterial source tracking (BST) is a recently developed technology for identifying the sources of fecal coliform bacteria and it may be helpful in generating improved TMDLs. Bacterial source tracking was performed, watershed models were developed, and TMDLs were prepared for three streams (Accotink Creek, Christians Creek, and Blacks Run) on Virginia's 303(d) list of impaired waters. Quality assurance of the BST work suggests that these data adequately describe the bacteria sources that are impairing these streams. Initial comparison of simulated bacterial sources with the observed BST data indicated that the fecal coliform sources were represented inaccurately in the initial model simulation. Revised model simulations (based on BST data) appeared to provide a better representation of the sources of fecal coliform bacteria in these three streams. The coupled approach of incorporating BST data into the fecal coliform transport model appears to reduce model uncertainty and should result in an improved TMDL. 相似文献
406.
This study examines sources of fecal coliform in Segment 2302 of the Rio Grande, located south of the International Falcon Reservoir in southern Texas. The watershed is unique because the contributing drainage areas lie in Texas and Mexico. Additionally, the watershed is mostly rural, with populated communities known as “colonias.” The colonias lack sewered systems and discharge sanitary water directly to the ground surface, thus posing an increased health hazard from coliform bacteria. Monitoring data confirm that Segment 2302 is not safe for contact recreation due to elevated fecal coliform levels. The goal of the study was to simulate the observed exceedences in Segment 2302 and evaluate potential strategies for their elimination. Fecal coliform contributions from ranching and colonia discharges were modeled using the Hydrologic Simulation Program‐Fortran (HSPF). Model results indicated that the regulatory 30‐day geometric mean fecal coliform concentration of 200 colony forming units (cfu) per 100 milliliters is exceeded approximately three times per year for a total of 30 days. Ongoing initiatives to improve wastewater facilities will reduce this to approximately once per year for 14 days. Best management practices will be necessary to reduce cattle access to streams and eliminate all exceedences. The developed model was limited by the relatively sparse flow and fecal coliform data. 相似文献
407.
408.
Anna Eleria Richard M. Vogel 《Journal of the American Water Resources Association》2005,41(5):1195-1209
In Massachusetts, the Charles River Watershed Association conducts a regular water quality monitoring and public notification program in the Charles River Basin during the recreational season to inform users of the river's health. This program has relied on laboratory analyses of river samples for fecal coliform bacteria levels, however, results are not available until at least 24 hours after sampling. To avoid the need for laboratory analyses, ordinary least squares (OLS) and logistic regression models were developed to predict fecal coliform bacteria concentrations and the probabilities of exceeding the Massachusetts secondary contact recreation standard for bacteria based on meteorological conditions and streamflow. The OLS models resulted in adjusted R2s ranging from 50 to 60 percent. An uncertainty analysis reveals that of the total variability of fecal coliform bacteria concentrations, 45 percent is explained by the OLS regression model, 15 percent is explained by both measurement and space sampling error, and 40 percent is explained by time sampling error. Higher accuracy in future bacteria forecasting models would likely result from reductions in laboratory measurement errors and improved sampling designs. 相似文献
409.
410.