首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   2篇
  国内免费   39篇
安全科学   1篇
废物处理   3篇
综合类   36篇
基础理论   16篇
污染及防治   5篇
  2022年   1篇
  2021年   1篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   5篇
  2014年   3篇
  2013年   9篇
  2012年   1篇
  2011年   9篇
  2010年   2篇
  2009年   4篇
  2008年   1篇
  2007年   6篇
  2006年   2篇
  2005年   1篇
  2004年   4篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1996年   1篇
  1994年   1篇
排序方式: 共有61条查询结果,搜索用时 31 毫秒
41.
阳离子表面活性剂改性的活性炭吸附砷(V)和砷(Ⅲ)   总被引:5,自引:0,他引:5  
选用阳离子表面活性剂十六烷基三甲基氯化铵(CTAC)、癸基三甲基溴化铵(MTAB) 以及三甲基正十四烷溴化铵(DTAB) 改性活性炭. 结果发现,表面活性剂加载使得活性炭的比表面积、孔径体积和表面Zeta电位发生改变. 改性后的活性炭用来吸附水中的砷酸盐和亚砷酸盐. 吸附等温实验结果显示,改性后活性炭对砷酸盐的吸附能力有显著提高,但对亚砷酸盐则只有在pH>10才有明显吸附.无论对砷酸盐还是亚砷酸盐,CTAC改性效果均要好于MTAB和DTAB. 改性后活性炭对砷酸盐的吸附主要通过离子交换,但离子交换并不是唯一的吸附机理. 砷酸盐的吸附受到溶液pH值和水中其他阴离子的竞争吸附的影响.中性pH范围内吸附最佳,而阴离子对砷酸盐的竞争则是PO43- >SO42- > NO3-.  相似文献   
42.
Schwertmannite, an iron(III)-oxyhydroxysulfate formed in acidic mining-impacted stream or lake waters often contaminated with toxic elements like arsenate or chromate, is able to incorporate high amounts of these oxyanions. Detoxification of the water might be achieved if precipitated arsenated or chromated schwertmannite is fixed in the sediment. However, under reduced conditions, reductive dissolution of iron oxides mediated by the activity of Fe(III)-reducing bacteria might mobilize arsenate and chromate again. In this study, the reduction of synthesized arsenated or chromated schwertmannite by the acidophilic Fe(III)-reducer Acidiphilium cryptum JF-5, isolated from an acidic mining-impacted sediment, was investigated. In TSB medium at pH 2.7 with glucose as electron donor, A. cryptum JF-5 reduced about 10% of the total Fe(III) present in pure synthetic schwertmannite but only 5% of Fe(III) present in arsenated schwertmannite. In contrast to sulfate that was released during the reductive dissolution of pure schwertmannite, arsenate was not released during the reduction of arsenated schwertmannite probably due to the high surface complexation constant of arsenate and Fe(III). In medium containing chromated schwertmannite, no Fe(II) was formed, and no glucose was consumed indicating that chromate might have been toxic to cells of A. cryptum JF-5. Both As(V) or Cr(VI) could not be utilized as electron acceptor by A. cryptum JF-5. A comparison between autoclaved (121 °C for 20 min) and non-autoclaved schwertmannite samples demonstrated that nearly 100%of the bound sulfate was released during heating, and FTIR spectra indicated a transformation of schwertmannite to goethite. This structural change was not observed with autoclaved arsenated or chromated schwertmannite. These results suggest that the mobility of arsenate and chromate is not enhanced by the activity of acidophilic Fe(III)-reducing bacteria in mining-impacted sediments. In contrast, the presence of bound arsenate and chromate seemed to stabilize schwertmannite against reductive dissolution and its further transformation to goethite that is an ongoing process in those sediments.  相似文献   
43.
In order to understand the similarity or difference of inorganic As species uptake and transport related to phosphorus in As-hyperaccumulator,uptake and transport of arsenate(As(V))and arsenite(As(III))were studied using Pteris vittata L.under sandculture.Higher concentrations of phosphate were found to inhibit accumulation of arsenate and arsenite in the fronds of P.vittata.The reduction in As accumulation was greater in old fronds than in young fronds,and relatively weak in root and rhizome.Moderateincreases,from 0.05 to 0.3 mmol/L,in phosphate reduced uptake of As(III)more than As(V),while the reverse was observed at highconcentrations of phosphate(1.0 mmol/L).Phosphate apparently reduced As transport and the proportion of As accumulated in frondsof P.vittata when As was supplied as As(V).It may in part be due to competition between phosphorus and As(V)during transport.Incontrast,phosphate had a much smaller effect on As transport when the As was supplied as As(III).Therefore,the results from presentexperiments indicates that a higher concentration of phosphate suppressed As accumulation and transport in P.vittata,especially inthe fronds,when exposed to As(V);but the suppression of phosphate to As transport may be insignificant when P.vittata exposed toAs(III)under sand culture conditions.The finding will help to understand the interaction of P and As during their uptake process in P.vittata.  相似文献   
44.
Arsenic (As) is a pervasive and ubiquitous environmental toxin that has created catastrophic human health problems world-wide. Chlamydomonas reinhardtii is a unicellular green alga, which exists ubiquitously in freshwater aquatic systems. Arsenic metabolism processes of this alga through arsenate reduction and sequent store and efflux were investigated. When supplied with 10 mol/L arsenate, arsenic speciation analysis showed that arsenite concentration increased from 5.7 to 15.7 mg/kg dry weight during a 7-day period, accounting for 18%–24% of the total As in alga. When treated with different levels of arsenate (10, 20, 30, 40, 50 mol/L) for 7 days, the arsenite concentration increased with increasing external arsenate concentrations, the proportion of arsenite was up to 23%–28% of the total As in alga. In efflux experiments, both arsenate and arsenite could be found in the efflux solutions. Additionally, the efflux of arsenate was more than that of arsenite. Furthermore, two arsenate reductase genes of C. reinhardtii (CrACR2s) were cloned and expressed in Escherichia coli strain WC3110 (ΔarsC) for the first time. The abilities of both CrACR2s genes to complement the arsenatesensitive strain were examined. CrACR2.1 restored arsenate resistance at 0.8 mmol/L. However, CrACR2.2 showed much less ability to complement. The gene products were demonstrated to reduce arsenate to arsenite in vivo. In agreement with the complementation results, CrACR2.1 showed higher reduction ability than CrACR2.2, when treated with 0.4 mmol/L arsenate for 16 hr incubation.  相似文献   
45.
Competitive and cooperative adsorption of arsenate and citrate on goethite   总被引:1,自引:1,他引:0  
The fate of arsenic in natural environments is influenced by adsorption onto metal (hydr)oxides. The extent of arsenic adsorption is strongly a ected by coexisting dissolved natural organic acids. Recently, some studies reported that there existed competitive adsorption between arsenate and citrate on goethite. Humic acid is known to interact strongly with arsenate by forming complexes in aqueous solution, hence it is necessary to undertake a comprehensive study of the adsorption of arsenate/citrate onto goethite in the presence of one another. The results showed that at the arsenate concentrations used in this study (0.006–0.27 mmol/L), citrate decreased arsenate adsorption at acidic pH but no e ect was observed at alkaline pH. In comparison, citrate adsorption was inhibited at acidic pH, but enhanced at alkaline pH by arsenate. This was probably due to the formation of complex between arsenate and citrate like the case of arsenate with humic acid. These results implied that the mechanism of the adsorption of arsenate and citrate onto goethite in the presence of one another involved not only competition for binding sites, but the cooperation between the two species at the watergoethite interface as well.  相似文献   
46.
Phosphorus (P) deficiency is thought to exacerbate the arsenic (As) phytotoxicity in paddy rice. The experiments were conducted to investigate the e ects of external phosphate supply on As accumulation in rice and its toxicity under phosphate deficiency conditions. Rice seedlings pretreated with a phosphorus deficient nutrient solution (–P) for 14 d accumulated more As than those pretreated with a normal phosphorus supply nutrient solution (+P). Rice protreated with –P showed As toxicity symptoms after being exposed to 50 mol/L arsenate for 4 h, while +P rice did not show any toxicity symptoms. Arsenic toxicity symptoms can be alleviated by increasing external P concentrations. The arsenate uptake rate and accumulation corresponded with the As toxicity in rice plants. Arsenic concentrations in rice roots decreased with increasing external phosphate concentrations. The lowest As accumulation and the highest P accumulation were found when the external P concentration reached 100 mol/L. In short, P deficiency increased the sensitivity of rice to arsenate and increasing of external phosphate supply could alleviate As toxicity.  相似文献   
47.
48.
李倩  陈小芳 《化工环保》2014,35(3):272-275
以湖北省某化工企业含砷废水处理过程中产生的含硫化砷废渣为研究对象,采用氧化碱浸—沉淀工艺制备砷酸铜。考察了沉淀反应液pH、沉淀反应温度、搅拌转速对砷沉淀效果的影响。采用XRD和SEM技术对砷酸铜的物相及形貌进行了表征。实验结果表明:废渣在氧化碱浸过程的砷浸出率为96.53%;沉淀反应时间为30 min时,沉淀步骤的最佳工艺条件为沉淀反应液pH 5.0、搅拌转速500 r/min、沉淀反应温度50 ℃。验证实验结果表明,在该工艺条件下,砷沉淀率均达93.96%以上。SEM表征结果显示,砷酸铜产品为颗粒状,粒径约为500 nm。XRD表征结果显示,砷酸铜产品中主要含有Cu3As2O8,Cu4O(AsO42,Cu4(As2O7)O2。该方法工艺简单、无二次污染,为废渣的综合利用提供了一种新的技术路线。  相似文献   
49.
This study investigates biogeochemical reductive release of arsenate from beudantite into solution in a crater area in northern Taiwan,using a combination of X-ray absorption near-edge structure (XANES) and atomic absorption spectrometry.Total arsenic (As) concentrations in the soil were more than 200 mg/kg.Over four months of laboratory experiments,less than 0.8% As was released into solution after reduction experiments.The 71% to 83% As was chemically reduced into arsenite (As(III)) and partially weathering into the soluble phase.The kinetic dissolution and re-precipitation of As,Fe,Pb and sulfate in this area of paddy soils merits further study.  相似文献   
50.
新型离子交换纤维去除水中砷酸根离子的研究   总被引:26,自引:4,他引:26  
Liu R  Wang Y  Tang H 《环境科学》2002,23(5):88-91
制备了一种新型离子交换纤维。研究表明,该离子交换纤维对砷酸根离子具有较高的吸附容量和较快的吸附速度,吸附动力学数据完全符合Lagergren二级速度方程,在所研究的砷浓度范围内,Freundlich型吸附等温式能很好地描述吸附平衡数据,去除砷酸根离子的最佳pH值范围是3.5-7.0。离子交换纤维柱吸附实验表明了较好的动态附特性,稀NaOH溶液是砷酸根离子的有效洗脱剂,30mL 0.5mol/L NaOH溶液可定量将96.0mg/g吸附量的砷从纤维柱上洗脱。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号