首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   269篇
  免费   27篇
  国内免费   27篇
安全科学   38篇
废物处理   1篇
环保管理   39篇
综合类   41篇
基础理论   175篇
污染及防治   8篇
评价与监测   8篇
社会与环境   10篇
灾害及防治   3篇
  2024年   2篇
  2023年   5篇
  2022年   6篇
  2021年   9篇
  2020年   12篇
  2019年   12篇
  2018年   9篇
  2017年   14篇
  2016年   15篇
  2015年   12篇
  2014年   14篇
  2013年   20篇
  2012年   15篇
  2011年   14篇
  2010年   23篇
  2009年   24篇
  2008年   12篇
  2007年   18篇
  2006年   19篇
  2005年   21篇
  2004年   10篇
  2003年   9篇
  2002年   5篇
  2001年   2篇
  2000年   6篇
  1999年   6篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1977年   1篇
  1971年   1篇
排序方式: 共有323条查询结果,搜索用时 453 毫秒
191.
Habitat loss is the principal threat to species. How much habitat remains—and how quickly it is shrinking—are implicitly included in the way the International Union for Conservation of Nature determines a species’ risk of extinction. Many endangered species have habitats that are also fragmented to different extents. Thus, ideally, fragmentation should be quantified in a standard way in risk assessments. Although mapping fragmentation from satellite imagery is easy, efficient techniques for relating maps of remaining habitat to extinction risk are few. Purely spatial metrics from landscape ecology are hard to interpret and do not address extinction directly. Spatially explicit metapopulation models link fragmentation to extinction risk, but standard models work only at small scales. Counterintuitively, these models predict that a species in a large, contiguous habitat will fare worse than one in 2 tiny patches. This occurs because although the species in the large, contiguous habitat has a low probability of extinction, recolonization cannot occur if there are no other patches to provide colonists for a rescue effect. For 4 ecologically comparable bird species of the North Central American highland forests, we devised metapopulation models with area‐weighted self‐colonization terms; this reflected repopulation of a patch from a remnant of individuals that survived an adverse event. Use of this term gives extra weight to a patch in its own rescue effect. Species assigned least risk status were comparable in long‐term extinction risk with those ranked as threatened. This finding suggests that fragmentation has had a substantial negative effect on them that is not accounted for in their Red List category. Estimación del Riesgo de Extinción Mediante Modelos Metapoblacionales de Fragmentación a Gran Escala  相似文献   
192.
Abstract:  The effects of climate change and habitat destruction and their interaction are likely to be the greatest challenge to animal and plant conservation in the twenty-first century. We used the world's smallest butterfly, the Sinai baton blue ( Pseudophilotes sinaicus ), as an exemplar of how global warming and human population pressures may act together to cause species extinctions. We mapped the entire global range of this butterfly and obtained extensive data on the intensity of livestock grazing. As with an increasing number of species, it is confined to a network of small habitat patches and is threatened both by indirect human-induced factors (global warming) and by the direct activities of humans (in this case, livestock grazing and collection of medicinal plants). In the absence of global warming, grazing, and plant collection, our model suggested that the butterfly will persist for at least 200 years. Above a threshold intensity of global warming, the chance of extinction accelerated rapidly, implying that there may be an annual average temperature, specific to each endangered species, above which extinction becomes very much more likely. By contrast, there was no such threshold of grazing pressure—the chance of extinction increased steadily with increasing grazing. The impact of grazing, however, decreased with higher levels of year-to-year variation in habitat quality. The effect of global warming did not depend on the future level of grazing, suggesting that the impacts of global warming and grazing are additive. If the areas of habitat patches individually fall below certain prescribed levels, the butterfly is likely to go extinct. Two patches were very important for persistence: if either were lost the species would probably go extinct. Our results have implications for the conservation management of all species whose habitats are at risk because of the direct activities of humans and in the longer term because of climate change.  相似文献   
193.
Fluvial fishes face increased imperilment from anthropogenic activities, but the specific factors contributing most to range declines are often poorly understood. For example, the range of the fluvial‐specialist shoal bass (Micropterus cataractae) continues to decrease, yet how perceived threats have contributed to range loss is largely unknown. We used species distribution models to determine which factors contributed most to shoal bass range loss. We estimated a potential distribution based on natural abiotic factors and a series of currently occupied distributions that incorporated variables characterizing land cover, non‐native species, and river fragmentation intensity (no fragmentation, dams only, and dams and large impoundments). We allowed interspecific relationships between non‐native congeners and shoal bass to vary across fragmentation intensities. Results from the potential distribution model estimated shoal bass presence throughout much of their native basin, whereas models of currently occupied distribution showed that range loss increased as fragmentation intensified. Response curves from models of currently occupied distribution indicated a potential interaction between fragmentation intensity and the relationship between shoal bass and non‐native congeners, wherein non‐natives may be favored at the highest fragmentation intensity. Response curves also suggested that >100 km of interconnected, free‐flowing stream fragments were necessary to support shoal bass presence. Model evaluation, including an independent validation, suggested that models had favorable predictive and discriminative abilities. Similar approaches that use readily available, diverse, geospatial data sets may deliver insights into the biology and conservation needs of other fluvial species facing similar threats.  相似文献   
194.
Potential environmental impacts on wildlife result from siting and construction (short-term impacts) and habitat removal and fragmentation (long-term impacts) as a consequence of transportation corridor construction. Especially in rural districts, wildlife migration corridors and dispersal orientation are altered or destroyed and wildlife populations and their gene pools are isolated. This significantly weakens the wildlife community. Prudent selection of construction corridors reduces fragmentation impacts by maximizing preserved fragment sizes, and by running parallel to, not through, natural areas. Corridor width determines the degree to which wildlife movement is restricted except that culverts, underpasses, overpasses, and one-way gates, can aid wildlife in cross movements. Minimum underpass dimensions for large wildlife should be no smaller than 14 ft×14 ft and should include natural substratum inverts. Rail corridors have four characteristics that minimize adverse environmental impacts. The railbed is dry, ballast fillters runoff, there is little runoff beyond the toe of slope, and drainage ditches serve to control sheet flow and erosion, sediment movement, and uncontrolled channel flow. Rail corridors usually occupy smaller land areas because they are narrower and are more feasible to elevate so as to allow free movement of wildlife across the corridor.  相似文献   
195.
The ability of both regulators and farmers themselves to monitor the impact of environmental practices may be an issue with nonpoint source pollution. Effects that can be perceived via direct sensory evidence provide information at low cost. Results from a survey of livestock farmers suggest that a practice that has more obvious effects on water quality, manure application setbacks, is more likely to be adopted than a more complicated one with less visible effects, manure testing. Farmers’ perceptions of the profitability of the two practices were similar. The importance of observability and complexity has implications for educational programs.  相似文献   
196.
Wildlife crossing structures are one solution to mitigating the fragmentation of wildlife populations caused by roads, but their effectiveness in providing connectivity has only been superficially evaluated. Hundreds of grizzly (Ursus arctos) and black bear (Ursus americanus) passages through under and overpasses have been recorded in Banff National Park, Alberta, Canada. However, the ability of crossing structures to allow individual and population‐level movements across road networks remains unknown. In April 2006, we initiated a 3‐year investigation into whether crossing structures provide demographic connectivity for grizzly and black bears in Banff National Park. We collected hair with multiple noninvasive methods to obtain genetic samples from grizzly and black bears around the Bow Valley. Our objectives were to determine the number of male and female grizzly and black bears that use crossing structures; examine spatial and temporal patterns of crossings; and estimate the proportions of grizzly and black bear populations in the Bow Valley that use crossing structures. Fifteen grizzly (7 female, 8 male) and 17 black bears (8 female, 9 male) used wildlife crossing structures. The number of individuals detected at wildlife crossing structures was highly correlated with the number of passages in space and time. Grizzly bears used open crossing structures (e.g., overpasses) more often than constricted crossings (e.g., culverts). Peak use of crossing structures for both bear species occurred in July, when high rates of foraging activity coincide with mating season. We compared the number of bears that used crossings with estimates of population abundance from a related study and determined that substantial percentages of grizzly (15.0% in 2006, 19.8% in 2008) and black bear (17.6% in 2006, 11.0% in 2008) populations used crossing structures. On the basis of our results, we concluded wildlife crossing structures provide demographic connectivity for bear populations in Banff National Park. Conectividad Demográfica para Poblaciones de Úrsidos en Estructuras para Cruce de Vida Silvestre en el Parque Nacional Banff  相似文献   
197.
Abstract: The lack of long‐term baseline data restricts the ability to measure changes in biological diversity directly and to determine its cause. This hampers conservation efforts and limits testing of basic tenets of ecology and conservation biology. We used a historical baseline survey to track shifts in the abundance and distribution of 296 native understory species across 82 sites over 55 years in the fragmented forests of southern Wisconsin. We resurveyed stands first surveyed in the early 1950s to evaluate the influence of patch size and surrounding land cover on shifts in native plant richness and heterogeneity and to evaluate changes in the relative importance of local site conditions versus the surrounding landscape context as drivers of community composition and structure. Larger forests and those with more surrounding forest cover lost fewer species, were more likely to recruit new species, and had lower rates of homogenization than smaller forests in more fragmented landscapes. Nearby urbanization further reduced both alpha and beta understory diversity. Similarly, understory composition depended strongly on local site conditions in the original survey but only weakly reflected the surrounding landscape composition. By 2005, however, the relative importance of these factors had reversed such that the surrounding landscape structure is now a much better predictor of understory composition than are local site conditions. Collectively, these results strongly support the idea that larger intact habitat patches and landscapes better sustain native species diversity and demonstrate that humans play an increasingly important role in driving patterns of native species diversity and community composition.  相似文献   
198.
Dispersal propensity, reflecting one of the most decisive mammalian life history traits, has been suggested to vary heritably and to locally adapt to prevailing dispersal conditions in wild house mouse populations. Because individual dispersal propensity highly significantly covaries with the developmental timing of the onset of agonistic interactions between littermate brothers, we used agonistic onset as an endophenotype to explore the potential genetic basis of dispersal-related behavioral variation in male house mice. We found significant covariation of microsatellite marker compositions with the probability of fraternal pairs to exhibit agonistic relationships before the age of 2 months. In particular, the presence of two alleles associated with a serotonin transporter protein gene (Slc6a4) and a testosterone dehydrogenase gene (Cyp3a11), respectively, strongly covaried with the probability of early agonistic onset. These results are congruent with recent findings of microsatellite length polymorphisms marking regulatory variation of gene expression that is relevant for social behavior, including dispersal propensity development, in other mammals. Genetic variability for ontogenetic timing of agonistic onset would be in agreement with genotypic differentiation of the dispersive behavioral syndrome in natural populations that could lead to local adaptation.  相似文献   
199.
200.
Abstract: The last century has seen the ascendance of a core economic model, which we will refer to as Walrasian economics. This model is driven by the psychological assumptions that humans act only in a self‐referential and narrowly rational way and that production can be described as a self‐contained circular flow between firms and households. These assumptions have critical implications for the way economics is used to inform conservation biology. Yet the Walrasian model is inconsistent with a large body of empirical evidence about actual human behavior, and it violates a number of basic physical laws. Research in behavioral science and neuroscience shows that humans are uniquely social animals and not self‐centered rational economic beings. Economic production is subject to physical laws including the laws of thermodynamics and mass balance. In addition, some contemporary economic theory, spurred by exciting new research in human behavior and a wealth of data about the negative global impact of the human economy on natural systems, is moving toward a world view that places consumption and production squarely in its behavioral and biophysical context. We argue that abandoning the straightjacket of the Walrasian core is essential to further progress in understanding the complex, coupled interactions between the human economy and the natural world. We call for a new framework for economic theory and policy that is consistent with observed human behavior, recognizes the complex and frequently irreversible interaction between human and natural systems, and directly confronts the cumulative negative effects of the human economy on the Earth's life support systems. Biophysical economics and ecological economics are two emerging economic frameworks in this movement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号