首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   8篇
  国内免费   49篇
废物处理   1篇
综合类   72篇
基础理论   7篇
污染及防治   2篇
  2024年   1篇
  2023年   3篇
  2022年   8篇
  2021年   8篇
  2020年   5篇
  2019年   4篇
  2018年   9篇
  2017年   6篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   7篇
  2012年   5篇
  2011年   4篇
  2009年   5篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1997年   1篇
排序方式: 共有82条查询结果,搜索用时 31 毫秒
41.
为探索北京城区大气细颗粒物( PM2. 5) 及其各组分的浓度特征,于 2019 年全年在车公庄地区开展了 PM2. 5及水溶性离子、碳质组分及金属元素的连续在线监测. 结果表明,2019 年北京城区 ρ( PM2. 5) 平均值为 46. 7 μg·m- 3,化学组分中 ρ[有机物( OM) ]、ρ( NO3-) 、ρ( SO42-) 、ρ( NH4+) 、ρ( EC) 、ρ( Cl-) 、ρ( 微量元素) 和 ρ( 地壳物质) 分别为 9. 1、11. 1、5. 7、5. 4、1. 4、0. 9、1. 6 和 7. 3 μg·m- 3,SNA ( SO42-、NO3-和 NH4+) 合计占到了...  相似文献   
42.
西安冬春季PM10中碳气溶胶的昼夜变化特征   总被引:5,自引:7,他引:5  
为探讨西安市大气碳气溶胶的季节变化和昼夜变化特征及来源,于2006-12-19~2007-01-21 (冬季)和2007-04-01~2007-04-30 (春季)连续采集了大气可吸入颗粒物(PM10)样品,并采用IMPROVE热光分析法分析了其中有机碳(OC)和元素碳(EC)的昼夜浓度.结果显示,冬季白天PM10及其中OC和EC的平均浓度分别为455.0、 62.4和7.5 μg/m3,夜晚的平均浓度分别为448.7、 66.1和6.9 μg/m3,对应春季白天的平均浓度分别为397.9、 26.7和6.9 μg/m3,夜晚分别为362.1、 31.9和8.6 μg/m3.冬季白天OC与EC的相关系数为0.44,较之春季0.81要差,主要与冬季采暖期燃料的多样性有关.碳气溶胶组分中,冬季白天和晚上二次有机碳气溶胶(SOC)的平均浓度为8.9和10.2 μg/m3,远高于春季(2.8和3.4 μg/m3),说明冬季较高的OC排放及较低的大气扩散能力利于碳气溶胶中SOC的生成.对碳气溶胶8种组分的因子分析结果表明,冬季燃煤排放及郊区的生物质排放对碳气溶胶有重要的贡献,而春季机动车的贡献明显增加.  相似文献   
43.
西安冬春季PM10中碳气溶胶的昼夜变化特征   总被引:3,自引:0,他引:3  
为探讨西安市大气碳气溶胶的季节变化和昼夜变化特征及来源,于2006-12-19~2007-01-21(冬季)和2007-04-01~2007-04-30(春季)连续采集了大气可吸入颗粒物(PM10)样品,并采用IMPROVE热光分析法分析了其中有机碳(OC)和元素碳(EC)的昼夜浓度.结果显示,冬季白天PM10及其中OC和EC的平均浓度分别为455.0、62.4和7.5μg/m3,夜晚的平均浓度分别为448.7、66.1和6.9μg/m3,对应春季白天的平均浓度分别为397.9、26.7和6.9μg/m3,夜晚分别为362.1、31.9和8.6μg/m3.冬季白天OC与EC的相关系数为0.44,较之春季0.81要差,主要与冬季采暖期燃料的多样性有关.碳气溶胶组分中,冬季白天和晚上二次有机碳气溶胶(SOC)的平均浓度为8.9和10.2μg/m3,远高于春季(2.8和3.4μg/m3),说明冬季较高的OC排放及较低的大气扩散能力利于碳气溶胶中SOC的生成.对碳气溶胶8种组分的因子分析结果表明,冬季燃煤排放及郊区的生物质排放对碳气溶胶有重要的贡献,而春季机动车的贡献明显增加.  相似文献   
44.
为了明确天津市区环境受体PM_(2.5)中碳组分的污染特征及来源,本研究分别于2016年2月(冬季)和8月(夏季)在天津市区设置6个采样点位同步采集PM_(2.5)样品,采用热光反射法测定样品中各个碳组分(OC1~OC4、EC1~EC3和OP(裂解碳))的含量,并计算得到OC、EC、CharEC和Soot-EC,以定性识别大气颗粒物中碳组分的来源.结果表明,夏季PM_(2.5)中OC平均浓度为(7.5±3.0)μg·m-3,占PM_(2.5)的11.7%±4.1%;而冬季相比于夏季OC的浓度和占比均有增加,分别为(13.1±7.0)μg·m-3和13.9%±2.8%.夏季和冬季EC浓度分别为(4.0±1.8)μg·m-3、(4.3±2.4)μg·m-3,占PM_(2.5)的6.1%±2.0%和4.6%±1.2%.OC与EC的相关性在夏季(r=0.83,p0.01)和冬季(r=0.96,p0.01)均显著,而冬季CharEC与OC(r=0.94,p0.01)、EC(r=0.98,p0.01)相关性明显高于夏季(OC:r=0.44,p0.01;EC:r=0.45,p0.01).PM_(2.5)中OC/EC平均值在夏季和冬季分别为1.9和3.0,估算得到夏季SOC为(2.6±1.4)μg·m-3,占OC的33.5%±13.6%;冬季为(3.5±2.5)μg·m-3,占OC的26.6%±12.0%.夏季Char-EC/Soot-EC为6.5,高于冬季(4.9),并且空间差异性显著(t检验,p0.05).正定矩阵因子模型(PMF)解析结果表明,天津市区大气PM_(2.5)中碳组分主要有4类来源:燃煤及生物质排放混合源、柴油车、汽油车、道路尘,对夏季PM_(2.5)中碳组分分担率分别为35.4%、16.4%、20.5%、14.4%;对冬季碳组分分担率分别为41.3%、15.5%、18.1%、16.3%.可见,燃煤和机动车是天津市区PM_(2.5)中碳组分的主要来源.  相似文献   
45.
This work investigated the formation of carbonaceous and nitrogenous disinfection by-products (C-DBPs, N-DBPs) upon chlorination of water samples collected from a surface water and a ground water treatment plant (SWTP and GWTP) where the conventional treatment processes, i.e., coagulation, sedimentation, and filtration were employed. Twenty DBPs, including four trihalomethanes, nine haloacetic acids, seven N-DBPs (dichloroacetamide, trichloroacetamide, dichloroacetonitrile, trichloroacetonitrile, bromochloroacetonitrile, dibromoacetonitrile and trichloronitromethane), and eight volatile chlorinated compounds (dichloromethane (DCM), 1,2-dichloroethane, tetrachloroethylene, chlorobenzene, 1,2-dichlorobenzene, 1,4-dichlorobenzene, 1,2,3-trichlorobenzene and 1,2,4-trichlorobenzene) were detected in the two WTPs. The concentrations of these contaminants were all below their corresponding maximum contamination levels (MCLs) regulated by the Standards for Drinking Water Quality of China (GB5749-2006) except for DCM (17.1 μg/L detected vs. 20 μg/L MCL). The SWTP had much higher concentrations of DBPs detected in the treated water as well as the DBP formation potentials tested in the filtered water than the GWTP, probably because more precursors (e.g., dissolved organic carbon, dissolved organic nitrogen) were present in the water source of the SWTP.  相似文献   
46.
蓬家夼金矿容矿地层为下白垩统莱阳群一段含碳碎屑岩系 ,与世界上已知的产于含炭岩系金矿床对比 ,以容矿地层时代新、陆相沉积及未经变质区别于已知的金矿床而认为是一种新类型金矿。笔者依据蓬家夼金矿控矿条件 ,成功预测并找到新的盲金矿床 (宋家沟 -发云夼金矿 )。本文论证蓬家夼金矿基础地质 ,指出杨金中等《论蓬家夼金矿的地质特征及成因与聂爱国等商榷》一文基础地质中的错误 :将莱阳群一段含碳碎屑岩错认为荆山群变质杂岩 ,将沉积碎屑岩误认为滑脱构造岩 ,从而导致对该矿床成因的错误认识  相似文献   
47.
轻型汽油车尾气OC和EC排放因子实测研究   总被引:5,自引:4,他引:1  
黄成  胡磬遥  鲁君 《环境科学》2018,39(7):3110-3117
选取27辆国3~国5轻型汽油车采用实验室底盘测功机和全流稀释定容采样系统(CVS)开展了尾气颗粒物中有机碳(OC)和无机碳(EC)组分的排放因子实测,分析了启动条件、行驶工况和喷油方式对轻型汽油车OC和EC排放的影响.结果表明,国3~国5轻型汽油车OC平均排放因子分别为(2.09±1.03)、(1.59±0.78)和(0.75±0.31)mg·km-1,EC平均排放因子分别为(1.98±1.42)、(1.57±1.80)和(0.65±0.49)mg·km-1,二者均随排放标准的提升呈显著下降趋势,OC/EC值分别为1.54±0.92、1.53±0.91以及1.47±0.66.OC1、OC2以及EC1和EC2是轻型汽油车排放的最主要碳质组分,分别占15.0%、20.6%、22.2%和21.7%.冷启动条件下轻型汽油车OC和EC排放约为热启动的1.4和1.8倍;高速工况下轻型汽油车OC和EC排放因子约为城区工况的2倍和4倍;缸内直喷(GDI)发动机的OC排放因子与进气道喷射(PFI)发动机接近,但EC排放因子约是后者的1.7倍,随着我国轻型汽油车中GDI发动机日渐普及,其EC排放应当引起密切关注.  相似文献   
48.
樊啸辰  郎建垒  程水源  王晓琦  吕喆 《环境科学》2018,39(10):4430-4438
大气颗粒物是影响我国大多数城市环境空气质量的首要污染物,近年来随着监测技术的进步和采样设备的改进,相关研究对象逐渐从大粒径的PM_10、PM_(2.5)转移到更小粒径的PM_1上.碳质组分是大气颗粒物的重要组成部分.以北京市为研究区域,选取2016年7月、10月及2017年1月、4月作为4个季节的代表月,对大气环境中的PM_(2.5)和PM_1进行采集,分析了二者的质量浓度和季节变化特征.采用两层嵌套气象-空气质量模型系统(WRF-CMAQ)耦合模型对采样时段进行了模拟,分析观测期间PM_(2.5)和PM_1的来源贡献,并使用因子分析法解析了碳质组分的来源.结果表明,PM_(2.5)和PM_1的质量浓度均呈现春、夏、秋、冬这4个季节递增的趋势;PM_1是PM_(2.5)中的主要组成,而且秋冬季节随着灰霾发生频率的增加,PM_1质量浓度占PM_(2.5)的比值明显升高;北京市大气环境中存在明显的二次污染,且SOC更容易在粒径更小的PM_1中积聚.散煤燃烧、机动车尾气排放、居民面源及生物质燃烧排放是北京市大气颗粒物的重要贡献来源;汽油车尾气、柴油车尾气、生物质燃烧和燃煤排放是北京市大气颗粒物中碳质组分的主要来源.  相似文献   
49.
大气颗粒物中包含多种组分的气溶胶,其中碳质气溶胶由于对人体健康、能见度有较大影响,已受到越来越多的关注.为研究碳质气溶胶的长期变化规律,采集了成都市2009—2013年的PM10样品,对其中所含的无机元素、水溶性离子及碳组分分别进行测定,并使用“PMF(正定矩阵因子分解法)-比值”模型分别对PM10和所含的碳质气溶胶的来源进行分析.结果表明,1月、2月、5月和12月的碳质气溶胶浓度较高,其中1月、2月和12月的OC/EC(有机碳与元素碳质量浓度之比)较高,并且PMF-比值模型计算结果也显示冬季SOC增多,表明冬季可能有更多的二次有机碳(SOC)生成;5月的char-EC/soot-EC(二者质量浓度之比,其中char-EC=EC1-OP,soot-EC=EC2+EC3,它们可更好地区分源类)较高,K含量也较高,表明可能有更多的生物质燃烧排放.PM10解析共发现6类源,依次为地壳扬尘(26.5%)、二次硫酸盐(25.1%)、燃煤&生物质燃烧混合源(17.3%)、二次硝酸盐&二次有机碳混合源(12.3%)、机动车源(11.8%)和水泥尘源(7.0%);碳质气溶胶解析发现,OC主要来源依次为机动车源(38.2%)、燃煤&生物质燃烧混合源(33.1%)和二次有机碳(25.3%),char-EC的主要来源是燃煤&生物质燃烧混合源和机动车源,分别占50.5%和45.4%,soot-EC则主要受机动车影响(达73.2%).研究显示,成都市PM10主要来自于地壳扬尘、二次生成和燃煤&生物质燃烧,而碳质气溶胶主要来自于机动车、燃煤&生物质燃烧.   相似文献   
50.
• Pyrogenic Carbonaceous Matter (PCM) promote both chemical and microbial synergies. • Discussion of PCM-enhanced abiotic transformation pathways of organic pollutants. • Conjugated microporous polymers (CMPs) can mimic the performance of PCM. • CMPs offer a platform that allows for systematic variation of individual properties. Pyrogenic Carbonaceous matter (PCM; e.g., black carbon, biochar, and activated carbon) are solid residues from incomplete combustion of fossil fuel or biomass. They are traditionally viewed as inert adsorbents for sequestering contaminants from the aqueous phase or providing surfaces for microbes to grow. In this account, we reviewed the recently discovered reactivity of PCM in promoting both chemical and microbial synergies that are important in pollutant transformation, biogeochemical processes of redox-active elements, and climate change mitigation with respect to the interaction between biochar and nitrous oxide (N2O). Moreover, we focused on our group’s work in the PCM-enhanced abiotic transformation of nitrogenous and halogenated pollutants and conducted in-depth analysis of the reaction pathways. To understand what properties of PCM confer its reactivity, our group pioneered the use of PCM-like polymers, namely conjugated microporous polymers (CMPs), to mimic the performance of PCM. This approach allows for the controlled incorporation of specific surface properties (e.g., quinones) into the polymer network during the polymer synthesis. As a result, the relationship between specific characteristics of PCM and its reactivity in facilitating the decay of a model pollutant was systematically studied in our group’s work. The findings summarized in this account help us to better understand an overlooked environmental process where PCM synergistically interacts with various environmental reagents such as hydrogen sulfide and water. Moreover, the knowledge gained in these studies could inform the design of a new generation of reactive carbonaceous materials with tailored properties that are highly efficient in contaminant removal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号