首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   18篇
  国内免费   62篇
安全科学   9篇
废物处理   12篇
环保管理   6篇
综合类   85篇
基础理论   10篇
污染及防治   32篇
评价与监测   1篇
社会与环境   1篇
灾害及防治   2篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2020年   5篇
  2019年   4篇
  2018年   2篇
  2017年   2篇
  2016年   7篇
  2015年   5篇
  2014年   7篇
  2013年   13篇
  2012年   18篇
  2011年   10篇
  2010年   6篇
  2009年   4篇
  2008年   7篇
  2007年   6篇
  2006年   10篇
  2005年   5篇
  2004年   9篇
  2003年   9篇
  2002年   7篇
  2001年   5篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1990年   2篇
排序方式: 共有158条查询结果,搜索用时 140 毫秒
31.
利用多孔陶珠固定化微生物细胞处理印染废水的研究   总被引:4,自引:0,他引:4  
用自制多孔陶珠载体固定脱色混合菌,在不同pH、温度、增补营养浓度、固定化细胞与废水比率等条件对印染废水的脱色进行了试验.在最适条件下进行填充柱式反应器作扩大处理印染废水,脱色效果良好.  相似文献   
32.
目的探究三种电源模式对ADC12高硅铝合金微弧氧化膜层性能的影响,从中选择对其微弧氧化膜层性能较优的电源模式。方法在三种不同电源模式(交流电源、单极性脉冲电源和双极性脉冲电源)的条件下,应用微弧氧化(MAO)技术在ADC12高硅铝合金表面制备了陶瓷膜层,并采用扫描电镜(SEM)、X射线衍射仪(XRD)、显微硬度计、摩擦磨损试验机等手段表征ADC12铝合金微弧氧化膜层的显微组织与性能。结果三种电源模式下微弧氧化膜层中都存在α-Al_2O_3、γ-Al_2O_3和Al9Si等物相;双脉冲模式下制备的微弧氧化膜层的致密性最好,厚度为15μm,硬度达到719 HV,摩擦系数为1.2左右,膜层与基体开始脱落的载荷为25.8 N。交流模式下制备的微弧氧化膜层膜厚较低,厚度为9μm,硬度达到698 HV,摩擦系数为1.35左右,膜层与基体开始脱落的载荷为19.5 N。单极性模式下制备的微弧氧化膜层厚度为17μm,但硬度为706 HV,摩擦系数为1.35左右,膜层与基体开始脱落的载荷为13.09 N。结论通过三种电源模式的比较,ADC12高硅铝合金在双极性脉冲电源模式下制得膜层的综合性能较好。  相似文献   
33.
Two hybrid processes including ozonation-ceramic membrane-biological activated carbon (BAC) (Process A) and ceramic membrane-BAC (Process B) were compared to treat polluted raw water. The performance of hybrid processes was evaluated with the removal efficiencies of turbidity, ammonia and organic matter. The results indicated that more than 99% of particle count was removed by both hybrid processes and ozonation had no significant effect on its removal. BAC filtration greatly improved the removal of ammonia. Increasing the dissolved oxygen to 30.0 mg/L could lead to a removal of ammonia with concentrations as high as 7.80 mg/L and 8.69 mg/L for Processes A and B, respectively. The average removal efficiencies of total organic carbon and ultraviolet absorbance at 254 nm (UV254, a parameter indicating organic matter with aromatic structure) were 49% and 52% for Process A, 51% and 48% for Process B, respectively. Some organic matter was oxidized by ozone and this resulted in reduced membrane fouling and increased membrane flux by 25%-30%. However, pre-ozonation altered the components of the raw water and affected the microorganisms in the BAC, which may impact the removals of organic matter and nitrite negatively.  相似文献   
34.
陶瓷高温除尘技术的研究进展   总被引:15,自引:0,他引:15  
许多国家都在研究陶瓷高温干法除尘技术,主要用在洁净煤燃烧联合循环发电技术中,讨论当前陶瓷高温除尘技术概要和国内外各种高温除尘技术及其研究状况,并对高温除尘技术的未来情况作出探讨性的预测。  相似文献   
35.
燃煤陶瓷窑炉黑烟净化技术研究   总被引:2,自引:1,他引:1  
利用一种自配的表面活性剂溶液进行了吸收燃煤陶瓷窑炉黑烟的试验研究。试验结果表明:当入口含尘浓度为800 ̄1500mg/m3,气流速度为13 ̄15m/s时,液位高度为30mm时,除尘效率达到95%以上。  相似文献   
36.
目的 针对陶瓷行业烟气"超净排放"须达到的标准(颗粒物浓度小于5 mg/Nm3)要求,创新设计管束除雾器流速调控装置结构.方法 在脱硫塔管束除雾器流速调控装置的出口末端均匀布置多组调节阀门,根据实际工况烟气量通过调节延伸在塔外的调节杆控制阀门启闭的数量,进而控制通过管束除雾器的总烟气量,实现单筒管束除雾器的筒内流速在设...  相似文献   
37.
赵丹 《四川环境》2012,(5):76-80
官地水电站竹子坝砂石生产系统生产废水处理采用“细砂回收+絮凝沉淀+清水回用+泥浆(石粉)脱水”的分级处理与循环利用工艺和陶瓷过滤机作为生产废水中石粉终端脱水设备,在系统运行过程中,根据监测成果进行分析和改进,不仅解决了大坝碾压混凝土石粉需求,同时解决了砂石加工系统生产废水处理难题,使处理成本大幅降低,值得类似工程和Ⅱ类及以上水域功能的建设项目借鉴。  相似文献   
38.
运行中更换电除尘器瓷转轴方法探讨   总被引:1,自引:0,他引:1  
介绍了机组运行期间电除尘器电晕极振打瓷转轴断裂的原因及判断方法,首次尝试在不停机状态下更换瓷转轴,并在顶部传动和侧部传动两种电晕极振打方式下得到了成功应用。  相似文献   
39.
市售蜂窝陶瓷经过氧化铝涂层后,进一步负载β-FeOOH活性组分,制得改性蜂窝陶瓷催化剂(β-FeOOH/Ce-ramic honeycomb,β-FeOOH/CH)。与单独臭氧氧化相比,基于该催化剂的固定床反应装置体现出更好的臭氧化活性,反应20 min后,水中的2,4-二氯苯氧乙酸(2,4-D)就可以完全去除,其矿化效率也可以达到80%以上。进一步考察了进水流速、有机物浓度等因素对多相催化臭氧化效率的影响,结果表明:β-FeOOH/CH可以显著提高臭氧的利用效率,能够有效去除水中包括2,4-D在内的多种有机污染物,而且催化剂可以重复使用,在长期的运行实验中其催化性能没有明显下降,该反应装置在饮用水深度处理领域具有很好的应用潜力。  相似文献   
40.
PAC混凝沉降法处理陶瓷废水操作条件的优化   总被引:1,自引:1,他引:0  
采用PAC混凝沉降法对陶瓷废水进行处理,考察PAC用量、搅拌强度、搅拌时间、进水pH和沉降时间对处理效果的影响,获得优化的操作条件。实验表明:水样的脱色率、浊度去除率和悬浮物去除率随着PAC用量、搅拌强度、搅拌时间和沉降时间的增大和进水pH的降低而呈现增大的趋势;最佳操作条件为:当废水量小、处理时间充足时,选用PAC用量为12 mg/L、搅拌强度为中速、搅拌时间为10 min、进水pH为6、沉降时间为2 h,此条件下水样的脱色率、浊度去除率和悬浮物去除率分别达到95.6%、95.7%和85.6%;当废水量大、处理时间不充足时,选用PAC用量为60 mg/L,沉降时间为30 min,此条件下水样的脱色率、浊度去除率和悬浮物去除率分别达到94.1%、93.4%和84.4%。证明混凝法对于去除陶瓷废水中的悬浮与胶体颗粒均是有效的。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号