首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142篇
  免费   8篇
  国内免费   40篇
安全科学   2篇
废物处理   1篇
环保管理   18篇
综合类   47篇
基础理论   43篇
污染及防治   76篇
评价与监测   3篇
  2023年   3篇
  2021年   3篇
  2020年   4篇
  2019年   6篇
  2018年   2篇
  2017年   5篇
  2016年   8篇
  2014年   1篇
  2013年   62篇
  2012年   8篇
  2011年   7篇
  2010年   7篇
  2009年   3篇
  2008年   1篇
  2007年   4篇
  2006年   4篇
  2005年   6篇
  2004年   12篇
  2003年   4篇
  2002年   6篇
  2001年   5篇
  2000年   3篇
  1999年   3篇
  1998年   3篇
  1997年   7篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1984年   1篇
  1983年   1篇
  1977年   1篇
排序方式: 共有190条查询结果,搜索用时 31 毫秒
61.
Abstract

Rainfall simulation was used with small packed boxes of soil to compare runoff of herbicides applied by conventional spray and injection into sprinkler‐irrigation (chemigation), under severe rainfall conditions. It was hypothesized that the larger water volumes used in chemigation would leach some of the chemicals out of the soil surface rainfall interaction zone, and thus reduce the amounts of herbicides available for runoff. A 47‐mm rain falling in a 2‐hour event 24 hours after application of alachlor (2‐chloro‐N‐(2,6‐diethylphenyl)‐N‐(methoxymethyl)‐acetamide) and atrazine (6‐chloro‐N‐ethyl‐N‐(1‐methylethyl)‐1,3,5‐triazine‐2,4‐diamine) was simulated. The design of the boxes allowed a measurement of pesticide concentrations in splash water throughout the rainfall event. Initial atrazine concentrations exceeding its’ solubility were observed. When the herbicides were applied in 64000 L/ha of water (simulating chemigation in 6.4 mm irrigation water) to the surface of a Tifton loamy sand, subsequent herbicide losses in runoff water were decreased by 90% for atrazine and 91% for alachlor, as compared to losses from applications in typical carrier water volumes of 187 L/ha. However, this difference was not due to an herbicide leaching effect but to a 96% decrease in the amount of runoff from the chemigated plots. Only 0.3 mm of runoff occurred from the chemigated boxes while 7.4 mm runoff occurred from the conventionally‐treated boxes, even though antecedent moisture was higher in the former. Two possible explanations for this unexpected result are (a) increased aggregate stability in the more moist condition, leading to less surface sealing during subsequent rainfall, or (b) a hydrophobic effect in the drier boxes. In the majority of these pans herbicide loss was much less in runoff than in leachate water. Thus, in this soil, application of these herbicides by chemigation would decrease their potential for pollution only in situations where runoff is a greater potential threat than leaching.  相似文献   
62.
To gain a better understanding of the physiology of the herbicide aminocyclopyrachlor in young plants of trumpet flower, the uptake and translocation were evaluated after the application of herbicide. This was determined by treating individual leaves with formulated herbicides plus 14C-aminocyclopyrachlor after the application of the formulated herbicide. This experiment used a randomized experimental design with three replications. In addition, field studies were conducted to assess the effectiveness of foliar applications of aminocyclopyrachlor in association with metsulfuton-methyl. The plant absorbed 20% of the herbicide applied. The translocation percentage did not surpass 5% of the total amount applied. Only 1% of the herbicide applied was translocated to the roots. Rate of 40 + 13 g a.i. 100 L?1 of aminocyclopyrachlor+metsulfuron-methyl was effective to control T. stans.  相似文献   
63.
Techniques and applications of thin layer chromatography (planar chromatography) for the separation, detection, qualitative and quantitative determination, and preparative isolation of pesticides and their metabolites and other related compounds are reviewed for the period from November 1, 2008 to November 1, 2010. Analyses are described for a variety of samples types and pesticide classes. In addition to references on residue analysis, studies such as pesticide structure-retention relationships, identification and characterization of plant pesticides and synthesized pesticides, metabolism, degradation, mobility, identification of biomarkers for detection of herbicide effects in plants, and lipophilicity are covered.  相似文献   
64.
Agricultural management affects the movement of atrazine in soil and leaching to groundwater. The objective of this study was to determine atrazine adsorption in a soil after 20 years of atrazine application under agronomic management practices differing in tillage practice (conventional and zero tillage), residue management (with and without residue retention) and crop rotation (wheat-maize rotation and maize monoculture). Atrazine sorption was determined using batch and column experiments. In the batch experiment, the highest distribution coefficient Kd (1.1 L kg?1) at 0–10 cm soil depth was observed under zero tillage, crop rotation and residue retention (conservation agriculture). The key factor in adsorption was soil organic matter content and type. This was confirmed in the column experiment, in which the highest Kd values were observed in treatments with residue retention, under either zero or conventional tillage (0.81 and 0.68 L kg?1, respectively). Under zero tillage, the fact that there was no soil movement helped to increase the Kd. The increased soil organic matter content with conservation agriculture may be more important than preferential flow due to higher pore connectivity in the same system. The soil's capacity to adsorb 2-hydroxyatrazine (HA), an important atrazine metabolite, was more important than its capacity to adsorb atrazine, and was similar under all four management practices (Kd ranged from 30 to 40 L kg?1). The HA adsorption was attributed to the type and amount of clay in the soil, which is unaffected by agronomic management. Soils under conservation agriculture had higher atrazine retention potential than soils under conventional tillage, the system that predominates in the study area.  相似文献   
65.
Biochar, a by-product of pyrolysis made from a wide array of plant biomass when producing biofuels, is a proposed soil amendment to improve soil health. This study measured herbicide sorption and efficacy when soils were treated with low (1% w/w) or high (10% w/w) amounts of biochar manufactured from different feedstocks [maize (Zea mays) stover, switchgrass (Panicum vigatum), and ponderosa pine (Pinus ponderosa)], and treated with different post-processing techniques. Twenty-four hour batch equilibration measured sorption of 14C-labelled atrazine or 2,4-D to two soil types with and without biochar amendments. Herbicide efficacy was measured with and without biochar using speed of seed germination tests of sensitive species. Biochar amended soils sorbed more herbicide than untreated soils, with major differences due to biochar application rate but minor differences due to biochar type or post-process handling technique. Biochar presence increased the speed of seed germination compared with herbicide alone addition. These data indicate that biochar addition to soil can increase herbicide sorption and reduce efficacy. Evaluation for site-specific biochar applications may be warranted to obtain maximal benefits without compromising other agronomic practices.  相似文献   
66.
Next-generation herbicides are relatively safe when used properly, but the recommended rates are relatively low, which can lead to overdosing. This study evaluated the responses of soil-dwelling microorganisms and soil enzymes to contamination with the Boreal 58 WG herbicide. The analyzed product contains active ingredients flufenacet and isoxaflutole. All tests were performed under laboratory conditions. The analyzed material was sandy clay. Boreal 58 WG was introduced to soil in four doses. Soil without the addition of the herbicide served as the control. The soil was mixed with the tested herbicide, and its moisture content was maintained at 50% of capillary water capacity. Biochemical and microbiological analyses were performed on experimental days 0, 20, 40, 80 and 160. Accidental contamination of soil with the Boreal 58 WG herbicide led to a relatively minor imbalance in the soil microbiological and biochemical profile. The herbicide dose influenced dehydrogenase activity in only 0.84%, urease activity in 2.04%, β-glucosidase activity in 8.26%, catalase activity in 12.40%, arylsulfatase activity in 12.54%, acid phosphatase activity in 42.11%, numbers of organotrophic bacteria in 18.29%, actinomyces counts in 1.31% and fungi counts in 6.86%.  相似文献   
67.
电子垃圾拆解区土壤中典型手性PCBs分布及对映体特征   总被引:1,自引:0,他引:1  
朱帅  刘世东 《环境化学》2021,40(3):671-677
龙塘镇位于广东省清远市,是国内最大的进口电子垃圾集中处理处置地之一.通过对龙塘镇土壤中7种手性PCBs对映体浓度和对映体百分数(enantiomer fractions,EF)值的测定,发现龙塘镇土壤样品除PCB45和PCB174外,其余5种手性PCBs在土壤中均有不同程度的检出.土壤中5种目标手性PCBs(PCB91...  相似文献   
68.
应用急性毒性试验方法,在对映体水平上研究了除草剂Rac-及S-异丙甲草胺对斜生栅藻(Scenedesmus obliquus)和普通核小球藻(Chlorella vulgaris)的急性毒性特征及腐殖酸对除草剂毒性的影响.结果表明,Rac-及S-异丙甲草胺的急性毒性与浓度及暴露时间呈正相关,Rac-及S-异丙甲草胺对微藻细胞的急性毒性存在立体选择性差异.Rac-异丙甲草胺对普通核小球藻和斜生栅藻的EC50,96 h分别是S-异丙甲草胺的2.25和1.81倍,S-异丙甲草胺对微藻细胞的生态毒性较大,而斜生栅藻对Rac-及S-异丙甲草胺的敏感性更强,且Rac-及S-异丙甲草胺对斜生栅藻和普通核小球藻的急性毒性存在一定的线性相关性.腐殖酸的加入能够改变Rac-及S-异丙甲草胺对微藻细胞生态毒性,对S-异丙甲草胺的生态毒性的影响更为明显(P<0.05).  相似文献   
69.
椒江口沉积物中有机氯农药的含量及对映体特征   总被引:2,自引:0,他引:2  
测定了椒江口表层沉积物中滴滴涕(DDTs)和六六六(HCHs)类有机氯农药的含量和对映体分数(EF).结果表明,HCHs、DDTs在所有采样点都有检出,HCHs、DDTs和有机氯农药总量分别为0.65~1.72 ng/g、1.30~34.31 ng/g和1.95~35.07 ng/g,沉积物中的DDTs含量明显高于HC...  相似文献   
70.
草甘膦毒性研究进展   总被引:13,自引:0,他引:13  
周垂帆  李莹  张晓勇  俞元春 《生态环境》2013,(10):1737-1743
随着现代农业的飞速发展,农药的应用越来越广泛。而目前草甘膦是使用最广泛、用量最大的除草剂种类之一,其在环境中的大量残留给环境带来了巨大潜在风险。介绍了草甘膦对靶标生物(植物)的制毒机理和非靶标生物(如:水生生物、两栖类动物、土壤生物和哺乳动物)的生态毒性,总结了草甘膦在群落、个体、细胞和分子水平上的生态毒性。综合国内外最新的研究表明:草甘膦制剂具有低毒性,且毒性要远远高于草甘膦酸的毒性,农药草甘膦制剂对非光合生物产生毒性的原因主要是由于表面活性剂的存在。而大多研究都表明,不同的草甘膦制剂及其组成成分毒性强弱为表面活性剂〉草甘膦制剂〉草甘膦酸〉草甘膦异丙胺盐,而草甘膦酸产生的毒性原因主要和其产生的酸性物质有关,并认为在当前的使用品种和剂量的状况下,草甘膦对人类的危害风险是很低的。最后,分析了草甘膦在土壤中与无机重金属共存的的生态毒性研究现状,认为由于草甘膦分子结构中含有磷酸基、羧基、氨基等配位基团,能够与土壤或水体中金属离子发生络合反应,使得重金属在一定程度上能够降低草甘膦的除草效率,草甘膦一定程度上也能够降低重金属对生物的毒性和有效性,此外对今后的研究重点进行了展望。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号