首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1654篇
  免费   87篇
  国内免费   166篇
安全科学   132篇
废物处理   33篇
环保管理   344篇
综合类   534篇
基础理论   581篇
污染及防治   55篇
评价与监测   65篇
社会与环境   128篇
灾害及防治   35篇
  2024年   5篇
  2023年   31篇
  2022年   56篇
  2021年   40篇
  2020年   47篇
  2019年   38篇
  2018年   31篇
  2017年   43篇
  2016年   58篇
  2015年   58篇
  2014年   73篇
  2013年   120篇
  2012年   66篇
  2011年   103篇
  2010年   95篇
  2009年   77篇
  2008年   77篇
  2007年   83篇
  2006年   104篇
  2005年   87篇
  2004年   97篇
  2003年   70篇
  2002年   59篇
  2001年   80篇
  2000年   46篇
  1999年   42篇
  1998年   33篇
  1997年   27篇
  1996年   29篇
  1995年   19篇
  1994年   13篇
  1993年   21篇
  1992年   9篇
  1991年   20篇
  1990年   9篇
  1989年   3篇
  1988年   12篇
  1987年   4篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   4篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1972年   1篇
  1970年   1篇
排序方式: 共有1907条查询结果,搜索用时 625 毫秒
461.
发展旅游业是扩大就业的重要渠道。森林公园旅游业是中国森林旅游业的主体。本文首先概述了中国森林公园建设与发展状况,并基于林业统计年鉴数据,分析中国森林公园旅游业发展及直接就业效应,进而采用投入产出法对森林公园旅游业的间接就业效应进行了测算,最后总结全文并提出相关政策建议。研究结果表明:森林公园旅游业持续发展的就业效应可观。测算数据显示,2011-2020年森林公园旅游业的总体就业量为512.1万人,其中直接和间接就业量分别为238.5万人和273.6万人。  相似文献   
462.
Abstract: In recent decades the rate and geographic extent of land‐use and land‐cover change has increased throughout the world's humid tropical forests. The pan‐tropical geography of forest change is a challenge to assess, and improved estimates of the human footprint in the tropics are critical to understanding potential changes in biodiversity. We combined recently published and new satellite observations, along with images from Google Earth and a literature review, to estimate the contemporary global extent of deforestation, selective logging, and secondary regrowth in humid tropical forests. Roughly 1.4% of the biome was deforested between 2000 and 2005. As of 2005, about half of the humid tropical forest biome contained 50% or less tree cover. Although not directly comparable to deforestation, geographic estimates of selective logging indicate that at least 20% of the humid tropical forest biome was undergoing some level of timber harvesting between 2000 and 2005. Forest recovery estimates are even less certain, but a compilation of available reports suggests that at least 1.2% of the humid tropical forest biome was in some stage of long‐term secondary regrowth in 2000. Nearly 70% of the regrowth reports indicate forest regeneration in hilly, upland, and mountainous environments considered marginal for large‐scale agriculture and ranching. Our estimates of the human footprint are conservative because they do not resolve very small‐scale deforestation, low‐intensity logging, and unreported secondary regrowth, nor do they incorporate other impacts on tropical forest ecosystems, such as fire and hunting. Our results highlight the enormous geographic extent of forest change throughout the humid tropics and the considerable limitations of the science and technology available for such a synthesis.  相似文献   
463.
Abstract: Unsustainable hunting of wildlife for food empties tropical forests of many species critical to forest maintenance and livelihoods of forest people. Extractive industries, including logging, can accelerate exploitation of wildlife by opening forests to hunters and creating markets for bushmeat. We monitored human demographics, bushmeat supply in markets, and household bushmeat consumption in five logging towns in the northern Republic of Congo. Over 6 years we recorded 29,570 animals in town markets and collected 48,920 household meal records. Development of industrial logging operations led to a 69% increase in the population of logging towns and a 64% increase in bushmeat supply. The immigration of workers, jobseekers, and their families altered hunting patterns and was associated with increased use of wire snares and increased diversity in the species hunted and consumed. Immigrants hunted 72% of all bushmeat, which suggests the short‐term benefits of hunting accrue disproportionately to “outsiders” to the detriment of indigenous peoples who have prior, legitimate claims to wildlife resources. Our results suggest that the greatest threat of logging to biodiversity may be the permanent urbanization of frontier forests. Although enforcement of hunting laws and promotion of alternative sources of protein may help curb the pressure on wildlife, the best strategy for biodiversity conservation may be to keep saw mills and the towns that develop around them out of forests.  相似文献   
464.
465.
466.
Abstract:  Relatively few studies have examined the ecological effects of group-selection timber harvesting, and nearly all have been short-term and have lacked experimental manipulations that allow pre- and posttreatment comparisons. We have been documenting the effects of a group-selection timber harvest on bird abundance in a Maine forest for 24 years (preharvest, 1983–1987; postharvest, 1988–2006). Here we characterized the trends in bird abundance over the first 20 years of the study in the managed and control halves of the 40-ha study area. Species responses to the group-selection harvest were idiosyncratic, but in general the mature-forest bird community was retained and species dependent on early successional habitat temporarily (≤8 years) benefited. The Eastern Wood-Pewee ( Contopus virens ) , Winter Wren ( Troglodytes troglodytes ) , Pine Warbler ( Dendroica pinus ) , and White-throated Sparrow ( Zonotrichia albicollis ) increased in abundance in the managed half of the study area following timber harvest, whereas the Veery ( Catharus fuscescens ) decreased. The Black-and-White Warbler ( Mniotilta varia ) , Nashville Warbler ( Vermivora ruficapilla ) , and Common Yellowthroat ( Geothlypis trichas ) responded positively to harvesting, as indicated by decreases in abundance in the control area and more protracted declines or stable abundances in the managed area. This study constitutes the longest experimental investigation to date of the effects of a group-selection harvest on birds and thus provides important information on the strength, direction, and duration of temporal changes in bird populations following forest management.  相似文献   
467.
Ecosystem function and resilience are compromised when habitats become fragmented due to land‐use change. This has led to national and international conservation strategies aimed at restoring habitat extent and improving functional connectivity (i.e., maintaining dispersal processes). However, biodiversity responses to landscape‐scale habitat creation and the relative importance of spatial and temporal scales are poorly understood, and there is disagreement over which conservation strategies should be prioritized. We used 160 years of historic post‐agricultural woodland creation as a natural experiment to evaluate biodiversity responses to habitat creation in a landscape context. Birds were surveyed in 101 secondary, broadleaf woodlands aged 10–160 years with ≥80% canopy cover and in landscapes with 0‐17% broadleaf woodland cover within 3000 m. We used piecewise structural equation modeling to examine the direct and indirect relationships between bird abundance and diversity, ecological continuity, patch characteristics, and landscape structure and quantified the relative conservation value of local and landscape scales for bird communities. Ecological continuity indirectly affected overall bird abundance and species richness through its effects on stand structure, but had a weaker influence (effect size near 0) on the abundance and diversity of species most closely associated with woodland habitats. This was probably because woodlands were rapidly colonized by woodland generalists in ≤10 years (minimum patch age) but were on average too young (median 50 years) to be colonized by woodland specialists. Local patch characteristics were relatively more important than landscape characteristics for bird communities. Based on our results, biodiversity responses to habitat creation depended on local‐ and landscape‐scale factors that interacted across time and space. We suggest that there is a need for further studies that focus on habitat creation in a landscape context and that knowledge gained from studies of habitat fragmentation and loss should be used to inform habitat creation with caution because the outcomes are not necessarily reciprocal.  相似文献   
468.
Epiphytes, air plants that are structurally dependent on trees, are a keystone group in tropical forests; they support the food and habitat needs of animals and influence water and nutrient cycles. They reach peak diversity in humid montane forests. Climate predictions for Central American mountains include increased temperatures, altered precipitation seasonality, and increased cloud base heights, all of which may challenge epiphytes. Although remaining montane forests are highly fragmented, many tropical agricultural systems include trees that host epiphytes, allowing epiphyte communities to persist even in landscapes with lower forest connectivity. I used structural equations models to test the relative effects of climate, land use, tree characteristics, and biotic interactions on vascular epiphyte diversity with data from 31 shade coffee farms and 2 protected forests in northern Nicaragua. I also tested substrate preferences of common species with randomization tests. Tree size, tree diversity, and climate all affected epiphyte richness, but the effect of climate was almost entirely mediated by bryophyte cover. Bryophytes showed strong sensitivity to mean annual temperature and insolation. Many ferns and some orchids were positively associated with bryophyte mats, whereas bromeliads tended to establish among lichen or on bare bark. The tight relationships between bryophytes and climate and between bryophytes and vascular epiphytes indicated that relatively small climate changes could result in rapid, cascading losses of montane epiphyte communities. Currently, shade coffee farms can support high bryophyte cover and diverse vascular epiphyte assemblages when larger, older trees are present. Agroforests serve as valuable reservoirs for epiphyte biodiversity and may be important early-warning systems as the climate changes.  相似文献   
469.
Tropical forests are experiencing enormous threats from deforestation and habitat degradation. Much knowledge of the impacts of these land-use changes on tropical species comes from studies examining patterns of richness and abundance. Demographic vital rates (survival, reproduction, and movement) can also be affected by land-use change in a way that increases species vulnerability to extirpation, but in many cases these impacts may not be manifested in short-term changes in abundance or species richness. We conducted a literature review to assess current knowledge and research effort concerning how land-use change affects species vital rates in tropical forest vertebrates. We found a general paucity of empirical research on demography across taxa and regions, with some biases toward mammals and birds and land-use transitions, including fragmentation and agriculture. There is also considerable between-species variation in demographic responses to land-use change, which could reflect trait-based differences in species sensitivity, complex context dependencies (e.g., between-region variation), or inconsistency in methods used in studies. Efforts to improve understanding of anthropogenic impacts on species demography are underway, but there is a need for increased research effort to fill knowledge gaps in understudied tropical regions and taxa. The lack of information on demographic impacts of anthropogenic disturbance makes it difficult to draw definite conclusions about the magnitude of threats to tropical ecosystems under anthropogenic pressures. Thus, determining conservation priorities and improving conservation effectiveness remains a challenge.  相似文献   
470.
Next-generation sequencing (NGS) has significantly increased knowledge of microbial communities and their distribution. However, it is still not common to apply NGS technology to microbial conservation. We sought to use NGS technologies to evaluate conservation strategies for wood-inhabiting fungi. Evaluating a deadwood experiment 3 years after it was established, we specifically examined which tree species combinations promoted the highest richness of wood-inhabiting fungi. Deadwood enrichment was an effective strategy and logs of 6 tree species, either those with the highest wood-inhabiting fungal α and γ diversity or those with the highest β diversity, maintained >1,000 operational taxonomic units (OTUs) spread over a wide range of taxonomic groups. In comparison, a conservation strategy based only on the results of sporocarp surveys yielded 591 OTUs. This result highlights the need to use NGS approaches to inform microbial conservation strategies. We also determined that 5 tree species with the highest saproxylic beetle γ diversity simultaneously conserved wood-inhabiting fungi. Apart from deadwood volume, we suggest data on deadwood quality and species also be included as indicators, especially for wood-inhabiting fungal diversity, and incorporated quickly in forest assessment and monitoring systems in Central Europe.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号