首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1409篇
  免费   330篇
  国内免费   283篇
安全科学   107篇
废物处理   28篇
环保管理   100篇
综合类   559篇
基础理论   862篇
污染及防治   259篇
评价与监测   67篇
社会与环境   19篇
灾害及防治   21篇
  2024年   1篇
  2023年   15篇
  2022年   29篇
  2021年   35篇
  2020年   30篇
  2019年   40篇
  2018年   110篇
  2017年   90篇
  2016年   95篇
  2015年   106篇
  2014年   124篇
  2013年   178篇
  2012年   131篇
  2011年   140篇
  2010年   105篇
  2009年   99篇
  2008年   103篇
  2007年   64篇
  2006年   50篇
  2005年   50篇
  2004年   52篇
  2003年   46篇
  2002年   30篇
  2001年   40篇
  2000年   40篇
  1999年   35篇
  1998年   28篇
  1997年   24篇
  1996年   20篇
  1995年   29篇
  1994年   13篇
  1993年   14篇
  1992年   15篇
  1991年   5篇
  1990年   3篇
  1989年   6篇
  1988年   6篇
  1987年   2篇
  1985年   3篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
排序方式: 共有2022条查询结果,搜索用时 31 毫秒
51.
Environmental heterogeneity is increasingly being used to select conservation areas that will provide for future biodiversity under a variety of climate scenarios. This approach, termed conserving nature's stage (CNS), assumes environmental features respond to climate change more slowly than biological communities, but will CNS be effective if the stage were to change as rapidly as the climate? We tested the effectiveness of using CNS to select sites in salt marshes for conservation in coastal Georgia (U.S.A.), where environmental features will change rapidly as sea level rises. We calculated species diversity based on distributions of 7 bird species with a variety of niches in Georgia salt marshes. Environmental heterogeneity was assessed across six landscape gradients (e.g., elevation, salinity, and patch area). We used 2 approaches to select sites with high environmental heterogeneity: site complementarity (environmental diversity [ED]) and local environmental heterogeneity (environmental richness [ER]). Sites selected based on ER predicted present‐day species diversity better than randomly selected sites (up to an 8.1% improvement), were resilient to areal loss from SLR (1.0% average areal loss by 2050 compared with 0.9% loss of randomly selected sites), and provided habitat to a threatened species (0.63 average occupancy compared with 0.6 average occupancy of randomly selected sites). Sites selected based on ED predicted species diversity no better or worse than random and were not resilient to SLR (2.9% average areal loss by 2050). Despite the discrepancy between the 2 approaches, CNS is a viable strategy for conservation site selection in salt marshes because the ER approach was successful. It has potential for application in other coastal areas where SLR will affect environmental features, but its performance may depend on the magnitude of geological changes caused by SLR. Our results indicate that conservation planners that had heretofore excluded low‐lying coasts from CNS planning could include coastal ecosystems in regional conservation strategies.  相似文献   
52.
Anthropogenic environmental impacts can disrupt the sensory environment of animals and affect important processes from mate choice to predator avoidance. Currently, these effects are best understood for auditory and chemosensory modalities, and recent reviews highlight their importance for conservation. We examined how anthropogenic changes to the visual environment (ambient light, transmission, and backgrounds) affect visual communication and camouflage and considered the implications of these effects for conservation. Human changes to the visual environment can increase predation risk by affecting camouflage effectiveness, lead to maladaptive patterns of mate choice, and disrupt mutualistic interactions between pollinators and plants. Implications for conservation are particularly evident for disrupted camouflage due to its tight links with survival. The conservation importance of impaired visual communication is less documented. The effects of anthropogenic changes on visual communication and camouflage may be severe when they affect critical processes such as pollination or species recognition. However, when impaired mate choice does not lead to hybridization, the conservation consequences are less clear. We suggest that the demographic effects of human impacts on visual communication and camouflage will be particularly strong when human‐induced modifications to the visual environment are evolutionarily novel (i.e., very different from natural variation); affected species and populations have low levels of intraspecific (genotypic and phenotypic) variation and behavioral, sensory, or physiological plasticity; and the processes affected are directly related to survival (camouflage), species recognition, or number of offspring produced, rather than offspring quality or attractiveness. Our findings suggest that anthropogenic effects on the visual environment may be of similar importance relative to conservation as anthropogenic effects on other sensory modalities.  相似文献   
53.
Conservation programs often manage populations indirectly through the landscapes in which they live. Empirically, linking reproductive success with landscape structure and anthropogenic change is a first step in understanding and managing the spatial mechanisms that affect reproduction, but this link is not sufficiently informed by data. Hierarchical multistate occupancy models can forge these links by estimating spatial patterns of reproductive success across landscapes. To illustrate, we surveyed the occurrence of grizzly bears (Ursus arctos) in the Canadian Rocky Mountains Alberta, Canada. We deployed camera traps for 6 weeks at 54 surveys sites in different types of land cover. We used hierarchical multistate occupancy models to estimate probability of detection, grizzly bear occupancy, and probability of reproductive success at each site. Grizzly bear occupancy varied among cover types and was greater in herbaceous alpine ecotones than in low‐elevation wetlands or mid‐elevation conifer forests. The conditional probability of reproductive success given grizzly bear occupancy was 30% (SE = 0.14). Grizzly bears with cubs had a higher probability of detection than grizzly bears without cubs, but sites were correctly classified as being occupied by breeding females 49% of the time based on raw data and thus would have been underestimated by half. Repeated surveys and multistate modeling reduced the probability of misclassifying sites occupied by breeders as unoccupied to <2%. The probability of breeding grizzly bear occupancy varied across the landscape. Those patches with highest probabilities of breeding occupancy—herbaceous alpine ecotones—were small and highly dispersed and are projected to shrink as treelines advance due to climate warming. Understanding spatial correlates in breeding distribution is a key requirement for species conservation in the face of climate change and can help identify priorities for landscape management and protection. Patrones Espaciales del Éxito Reproductivo de Osos Pardos, Derivados de Modelos Jerárquicos Multi‐Estado  相似文献   
54.
为了准确预测化工设备可靠性趋势,针对化工设备失效寿命数据为小样本的情形,基于灰色估计法与支持向量回归机在小样本数据处理中的优势,建立了失效寿命时间服从三参数威布尔分布的化工设备可靠性模型;结合GM(1,1)和SVR对模型进行参数估计,在压缩机可靠性分析中进行了实例应用,对比分析了最小二乘法、灰色估计法和GM-SVR的估计效果。研究结果表明:GM-SVR对威布尔分布参数的估计精度明显优于最小二乘法和灰色估计法,可以有效地应用于化工设备失效数据为小样本时的可靠性预测。  相似文献   
55.
Mitigation and offset programs designed to compensate for ecosystem function losses due to development must balance losses from affected ecosystems with gains in restored ecosystems. Aggregation rules applied to ecosystem functions to assess site equivalence are based on implicit assumptions about the substitutability of functions among sites and can profoundly influence the distribution of restored ecosystem functions on the landscape. We investigated the consequences of rules applied to the aggregation of ecosystem functions for wetland offsets in the Beaverhill watershed in Alberta, Canada. We considered the fate of 3 ecosystem functions: hydrology, water purification, and biodiversity. We set up an affect‐and‐offset algorithm to simulate the effect of aggregation rules on ecosystem function for wetland offsets. Cobenefits and trade‐offs among functions and the constraints posed by the quantity and quality of restorable sites resulted in a redistribution of functions between affected and offset wetlands. Hydrology and water purification functions were positively correlated with one another and negatively correlated with biodiversity function. Weighted‐average rules did not replace functions in proportion to their weights. Rules prioritizing biodiversity function led to more monofunctional wetlands and landscapes. The minimum rule, for which the wetland score was equal to the worst performing function, promoted multifunctional wetlands and landscapes. The maximum rule, for which the wetland score was equal to the best performing function, promoted monofunctional wetlands and multifunctional landscapes. Because of implicit trade‐offs among ecosystem functions, no‐net‐loss objectives for multiple functions should be constructed within a landscape context. Based on our results, we suggest criteria for the design of aggregation rules for no net loss of ecosystem functions within a landscape context include the concepts of substitutability, cobenefits and trade‐offs, landscape constraints, heterogeneity, and the precautionary principle.  相似文献   
56.
Understanding human perspectives is critical in a range of conservation contexts, for example, in overcoming conflicts or developing projects that are acceptable to relevant stakeholders. The Q methodology is a unique semiquantitative technique used to explore human perspectives. It has been applied for decades in other disciplines and recently gained traction in conservation. This paper helps researchers assess when Q is useful for a given conservation question and what its use involves. To do so, we explained the steps necessary to conduct a Q study, from the research design to the interpretation of results. We provided recommendations to minimize biases in conducting a Q study, which can affect mostly when designing the study and collecting the data. We conducted a structured literature review of 52 studies to examine in what empirical conservation contexts Q has been used. Most studies were subnational or national cases, but some also address multinational or global questions. We found that Q has been applied to 4 broad types of conservation goals: addressing conflict, devising management alternatives, understanding policy acceptability, and critically reflecting on the values that implicitly influence research and practice. Through these applications, researchers found hidden views, understood opinions in depth and discovered points of consensus that facilitated unlocking difficult disagreements. The Q methodology has a clear procedure but is also flexible, allowing researchers explore long‐term views, or views about items other than statements, such as landscape images. We also found some inconsistencies in applying and, mainly, in reporting Q studies, whereby it was not possible to fully understand how the research was conducted or why some atypical research decisions had been taken in some studies. Accordingly, we suggest a reporting checklist.  相似文献   
57.
Abundance estimates are essential for assessing the viability of populations and the risks posed by alternative management actions. An effort to estimate abundance via a repeated mark‐recapture experiment may fail to recapture marked individuals. We devised a method for obtaining lower bounds on abundance in the absence of recaptures for both panmictic and spatially structured populations. The method assumes few enough recaptures were expected to be missed by random chance. The upper Bayesian credible limit on expected recaptures allows probabilistic statements about the minimum number of individuals present in the population. We applied this method to data from a 12‐year survey of pallid sturgeon (Scaphirhynchus albus) in the lower and middle Mississippi River (U.S.A.). None of the 241 individuals marked was recaptured in the survey. After accounting for survival and movement, our model‐averaged estimate of the total abundance of pallid sturgeon ≥3 years old in the study area had a 1%, 5%, or 25% chance of being <4,600, 7,000, or 15,000, respectively. When we assumed fish were distributed in proportion to survey catch per unit effort, the farthest downstream reach in the survey hosted at least 4.5–15 fish per river kilometer (rkm), whereas the remainder of the reaches in the lower and middle Mississippi River hosted at least 2.6–8.5 fish/rkm for all model variations examined. The lower Mississippi River had an average density of pallid sturgeon ≥3 years old of at least 3.0–9.8 fish/rkm. The choice of Bayesian prior was the largest source of uncertainty we considered but did not alter the order of magnitude of lower bounds. Nil‐recapture estimates of abundance are highly uncertain and require careful communication but can deliver insights from experiments that might otherwise be considered a failure.  相似文献   
58.
Approaches to prioritize conservation actions are gaining popularity. However, limited empirical evidence exists on which species might benefit most from threat mitigation and on what combination of threats, if mitigated simultaneously, would result in the best outcomes for biodiversity. We devised a way to prioritize threat mitigation at a regional scale with empirical evidence based on predicted changes to population dynamics—information that is lacking in most threat‐management prioritization frameworks that rely on expert elicitation. We used dynamic occupancy models to investigate the effects of multiple threats (tree cover, grazing, and presence of an hyperaggressive competitor, the Noisy Miner (Manorina melanocephala) on bird‐population dynamics in an endangered woodland community in southeastern Australia. The 3 threatening processes had different effects on different species. We used predicted patch‐colonization probabilities to estimate the benefit to each species of removing one or more threats. We then determined the complementary set of threat‐mitigation strategies that maximized colonization of all species while ensuring that redundant actions with little benefit were avoided. The single action that resulted in the highest colonization was increasing tree cover, which increased patch colonization by 5% and 11% on average across all species and for declining species, respectively. Combining Noisy Miner control with increasing tree cover increased species colonization by 10% and 19% on average for all species and for declining species respectively, and was a higher priority than changing grazing regimes. Guidance for prioritizing threat mitigation is critical in the face of cumulative threatening processes. By incorporating population dynamics in prioritization of threat management, our approach helps ensure funding is not wasted on ineffective management programs that target the wrong threats or species.  相似文献   
59.
Conservation decision makers commonly use project‐scoring metrics that are inconsistent with theory on optimal ranking of projects. As a result, there may often be a loss of environmental benefits. We estimated the magnitudes of these losses for various metrics that deviate from theory in ways that are common in practice. These metrics included cases where relevant variables were omitted from the benefits metric, project costs were omitted, and benefits were calculated using a faulty functional form. We estimated distributions of parameters from 129 environmental projects from Australia, New Zealand, and Italy for which detailed analyses had been completed previously. The cost of using poor prioritization metrics (in terms of lost environmental values) was often high—up to 80% in the scenarios we examined. The cost in percentage terms was greater when the budget was smaller. The most costly errors were omitting information about environmental values (up to 31% loss of environmental values), omitting project costs (up to 35% loss), omitting the effectiveness of management actions (up to 9% loss), and using a weighted‐additive decision metric for variables that should be multiplied (up to 23% loss). The latter 3 are errors that occur commonly in real‐world decision metrics, in combination often reducing potential benefits from conservation investments by 30–50%. Uncertainty about parameter values also reduced the benefits from investments in conservation projects but often not by as much as faulty prioritization metrics.  相似文献   
60.
Conservation policy sits at the nexus of natural science and politics. On the one hand, conservation scientists strive to maintain scientific credibility by emphasizing that their research findings are the result of disinterested observations of reality. On the other hand, conservation scientists are committed to conservation even if they do not advocate a particular policy. The professional conservation literature offers guidance on negotiating the relationship between scientific objectivity and political advocacy without damaging conservation science's credibility. The value of this guidance, however, may be restricted by limited recognition of credibility's multidimensionality and emergent nature: it emerges through perceptions of expertise, goodwill, and trustworthiness. We used content analysis of the literature to determine how credibility is framed in conservation science as it relates to apparent contradictions between science and advocacy. Credibility typically was framed as a static entity lacking dimensionality. Authors identified expertise or trustworthiness as important, but rarely mentioned goodwill. They usually did not identify expertise, goodwill, or trustworthiness as dimensions of credibility or recognize interactions among these 3 dimensions of credibility. This oversimplification may limit the ability of conservation scientists to contribute to biodiversity conservation. Accounting for the emergent quality and multidimensionality of credibility should enable conservation scientists to advance biodiversity conservation more effectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号