首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4016篇
  免费   278篇
  国内免费   290篇
安全科学   190篇
废物处理   21篇
环保管理   978篇
综合类   1408篇
基础理论   693篇
环境理论   76篇
污染及防治   192篇
评价与监测   214篇
社会与环境   593篇
灾害及防治   219篇
  2024年   15篇
  2023年   101篇
  2022年   98篇
  2021年   129篇
  2020年   133篇
  2019年   200篇
  2018年   182篇
  2017年   229篇
  2016年   245篇
  2015年   226篇
  2014年   150篇
  2013年   329篇
  2012年   244篇
  2011年   289篇
  2010年   206篇
  2009年   221篇
  2008年   186篇
  2007年   222篇
  2006年   178篇
  2005年   138篇
  2004年   130篇
  2003年   117篇
  2002年   95篇
  2001年   83篇
  2000年   103篇
  1999年   87篇
  1998年   38篇
  1997年   46篇
  1996年   23篇
  1995年   18篇
  1994年   16篇
  1993年   33篇
  1992年   11篇
  1991年   14篇
  1990年   15篇
  1989年   4篇
  1988年   3篇
  1987年   4篇
  1986年   2篇
  1985年   5篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   3篇
  1977年   3篇
  1971年   2篇
排序方式: 共有4584条查询结果,搜索用时 31 毫秒
71.
Summary The balance of evidence suggests a perceptible human influence on global ecosystems. Human activities are affecting the global ecosystem, some directly and some indirectly. If researchers could clarify the extent to which specific human activities affect global ecosystems, they would be in a much better position to suggest strategies for mitigating against the worst disturbances. Sophisticated statistical analysis can help in interpreting the influence of specific human activities on global ecosystems more carefully. This study aims at identifying significant or influential human activities (i.e. factors) on CO2 emissions using statistical analyses. The study was conducted for two cases: (i) developed countries and (ii) developing countries. In developed countries, this study identified three influential human activities for CO2 emissions: (i) combustion of fossil fuels, (ii) population pressure on natural and terrestrial ecosystems, and (iii) land use change. In developing countries, the significant human activities causing an upsurge of CO2 emissions are: (i) combustion of fossil fuels, (ii) terrestrial ecosystem strength and (iii) land use change. Among these factors, combustion of fossil fuels is the most influential human activity for CO2 emissions both in developed and developing countries. Regression analysis based on the factor scores indicated that combustion of fossil fuels has significant positive influence on CO2 emissions in both developed and developing countries. Terrestrial ecosystem strength has a significant negative influence on CO2 emissions. Land use change and CO2 emissions are positively related, although regression analysis showed that the influence of land use change on CO2 emissions was still insignificant. It is anticipated, from the findings of this study, that CO2 emissions can be reduced by reducing fossil-fuel consumption and switching to alternative energy sources, preserving exiting forests, planting trees on abandoned and degraded forest lands, or by planting trees by social/agroforestry on agricultural lands.  相似文献   
72.
This study integrated aerial photographs from 1952, 1981, and 1998, and a satellite image from 2000 with oral histories and socioeconomic surveys to assess changes in forest and land cover in Ang Nhai village, Laos. The study documents the history of resource use and changes in household access to resources in the village. Three distinctive trends were observed in terms of forest and land cover—forest degradation, deforestation, and regeneration. Project results suggest that land and forest cover change dynamically under different circumstances. The case study also points out that integration into the market economy can induce intensification of unused lowland areas, while removing pressures from upland areas previously used for supplementing agricultural production. In addition, the creation of a national reserve forest to restrict local access and forest use was an ineffective tool for regulating encroachment and logging activities.  相似文献   
73.
ABSTRACT: High springtime river flows came earlier by one to two weeks in large parts of northern New England during the 20th Century. In this study it was hypothesized that late spring/early summer recessional flows and late summer/early fall low flows could also be occurring earlier. This could result in a longer period of low flow recession and a decrease in the magnitude of low flows. To test this hypothesis, variations over time in the magnitude and timing of low flows were analyzed. To help understand the relation between low flows and climatic variables in New England, low flows were correlated with air temperatures and precipitation. Analysis of data from 23 rural, unregulated rivers across New England indicated little evidence of consistent changes in the timing or magnitude of late summer/early fall low flows during the 20th Century. The interannual variability in the timing and magnitude of the low flows in northern New England was explained much more by the interannual variability in precipitation than by the interannual variability of air temperatures. The highest correlation between the magnitude of the low flows and air temperatures was with May through November temperatures (r =?0.37, p= 0.0017), while the highest correlation with precipitation was with July through August precipitation (r = 0.67, p > 0.0001).  相似文献   
74.
吴超  李思贤 《安全》2019,40(9):18-25,5
为发展安全科学原理和给事故防控与调查提供新的方法,根据变化对系统安全的影响机制,开展安全降变原理及事故致因新模型研究。首先,提出安全降变原理并解析其内涵及研究意义。其次,基于安全降变原理,给出不同层级安全系统变化的分类实例,并对作业场所事故及其致因重新定义和分类。再次,构建基于安全降变原理的C-S-R事故致因新模型。最后,基于事故案例分析,验证所提出的C-S-R事故致因新模型与安全降变原理的有效性。结果表明,各级安全系统中自发或是受联动的变化超出系统的变化承受水平时,将导致事故的发生。经事故案例分析验证可知,安全降变原理及C-S-R事故致因新模型具有充分的实用性。  相似文献   
75.
Climate change represents one of the most pressing societal and scientific challenges of our time. While much of the current research on climate change focuses on future prediction, some of the strongest signals of warming can already be seen in Arctic and alpine areas, where temperatures are rising faster than the global average, and in the oceans, where the combination of rising temperatures and acidification due to increased CO2 concentrations has had catastrophic consequences for sensitive marine organisms inhabiting coral reefs. The scientific papers highlighted as part of this anniversary issue represent some of the most impactful advances in our understanding of the consequences of anthropogenic climate change. Here, we reflect on the legacy of these papers from the biotic perspective.  相似文献   
76.
Conservation programs often manage populations indirectly through the landscapes in which they live. Empirically, linking reproductive success with landscape structure and anthropogenic change is a first step in understanding and managing the spatial mechanisms that affect reproduction, but this link is not sufficiently informed by data. Hierarchical multistate occupancy models can forge these links by estimating spatial patterns of reproductive success across landscapes. To illustrate, we surveyed the occurrence of grizzly bears (Ursus arctos) in the Canadian Rocky Mountains Alberta, Canada. We deployed camera traps for 6 weeks at 54 surveys sites in different types of land cover. We used hierarchical multistate occupancy models to estimate probability of detection, grizzly bear occupancy, and probability of reproductive success at each site. Grizzly bear occupancy varied among cover types and was greater in herbaceous alpine ecotones than in low‐elevation wetlands or mid‐elevation conifer forests. The conditional probability of reproductive success given grizzly bear occupancy was 30% (SE = 0.14). Grizzly bears with cubs had a higher probability of detection than grizzly bears without cubs, but sites were correctly classified as being occupied by breeding females 49% of the time based on raw data and thus would have been underestimated by half. Repeated surveys and multistate modeling reduced the probability of misclassifying sites occupied by breeders as unoccupied to <2%. The probability of breeding grizzly bear occupancy varied across the landscape. Those patches with highest probabilities of breeding occupancy—herbaceous alpine ecotones—were small and highly dispersed and are projected to shrink as treelines advance due to climate warming. Understanding spatial correlates in breeding distribution is a key requirement for species conservation in the face of climate change and can help identify priorities for landscape management and protection. Patrones Espaciales del Éxito Reproductivo de Osos Pardos, Derivados de Modelos Jerárquicos Multi‐Estado  相似文献   
77.
Traditional ecological knowledge (TEK) is a critical global resource that may be eroding amid social and environmental change. Here, we present data on local perceptions of TEK change from three communities on Malekula Island in Vanuatu. Utilizing a structured interview (n = 120), we find a common perception of TEK loss. Participants defined two key periods of TEK erosion (roughly 1940–1960 and 1980–present), and noted that TEK decline was driven both external (e.g., church) and internal (e.g., shifting values) processes. Erosion was perceived to more comprehensive in the worldview domain than in aspects of ethnobiological knowledge and practice. These data indicate the perceived fragility of TEK systems and the complexity of TEK change. TEK systems are critical to natural resource management, and data such as these will assist in designing nuanced responses to the ongoing loss of cultural knowledge and practice.  相似文献   
78.
Solar energy conversion into electricity by photovoltaic modules is now a mature technology. We discuss the need for materials and device developments using conventional silicon and other materials, pointing to the need to use scalable materials and to reduce the energy payback time. Storage of solar energy can be achieved using the energy of light to produce a fuel. We discuss how this can be achieved in a direct process mimicking the photosynthetic processes, using synthetic organic, inorganic, or hybrid materials for light collection and catalysis. We also briefly discuss challenges and needs for large-scale implementation of direct solar fuel technologies.  相似文献   
79.
Agroforestry systems have substantial potential to conserve native biodiversity and provide ecosystem services. In particular, agroforestry systems have the potential to conserve native tree diversity and sequester carbon for climate change mitigation. However, little research has been conducted on the temporal stability of species diversity and aboveground carbon stocks in these systems or the relation between species diversity and aboveground carbon sequestration. We measured changes in shade‐tree diversity and shade‐tree carbon stocks in 14 plots of a 35‐ha coffee cooperative over 9 years and analyzed relations between species diversity and carbon sequestration. Carbon sequestration was positively correlated with initial species richness of shade trees. Species diversity of shade trees did not change significantly over the study period, but carbon stocks increased due to tree growth. Our results show a potential for carbon sequestration and long‐term biodiversity conservation in smallholder coffee agroforestry systems and illustrate the opportunity for synergies between biodiversity conservation and climate change mitigation. Interacciones entre el Secuestro de Carbono y la Diversidad de Árboles de Sombra en una Cooperativa de Café de Pequeños Agricultores en El Salvador  相似文献   
80.
Abstract: Avian conservation efforts must account for changes in vegetation composition and structure associated with climate change. We modeled vegetation change and the probability of occurrence of birds to project changes in winter bird distributions associated with climate change and fire management in the northern Chihuahuan Desert (southwestern U.S.A.). We simulated vegetation change in a process‐based model (Landscape and Fire Simulator) in which anticipated climate change was associated with doubling of current atmospheric carbon dioxide over the next 50 years. We estimated the relative probability of bird occurrence on the basis of statistical models derived from field observations of birds and data on vegetation type, topography, and roads. We selected 3 focal species, Scaled Quail (Callipepla squamata), Loggerhead Shrike (Lanius ludovicianus), and Rock Wren (Salpinctes obsoletus), that had a range of probabilities of occurrence for our study area. Our simulations projected increases in relative probability of bird occurrence in shrubland and decreases in grassland and Yucca spp. and ocotillo (Fouquieria splendens) vegetation. Generally, the relative probability of occurrence of all 3 species was highest in shrubland because leaf‐area index values were lower in shrubland. This high probability of occurrence likely is related to the species’ use of open vegetation for foraging. Fire suppression had little effect on projected vegetation composition because as climate changed there was less fuel and burned area. Our results show that if future water limits on plant type are considered, models that incorporate spatial data may suggest how and where different species of birds may respond to vegetation changes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号