首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2270篇
  免费   218篇
  国内免费   279篇
安全科学   179篇
废物处理   20篇
环保管理   604篇
综合类   872篇
基础理论   335篇
环境理论   54篇
污染及防治   86篇
评价与监测   133篇
社会与环境   342篇
灾害及防治   142篇
  2024年   4篇
  2023年   70篇
  2022年   61篇
  2021年   87篇
  2020年   99篇
  2019年   125篇
  2018年   121篇
  2017年   150篇
  2016年   139篇
  2015年   145篇
  2014年   93篇
  2013年   237篇
  2012年   144篇
  2011年   165篇
  2010年   127篇
  2009年   107篇
  2008年   95篇
  2007年   111篇
  2006年   89篇
  2005年   68篇
  2004年   73篇
  2003年   63篇
  2002年   54篇
  2001年   42篇
  2000年   74篇
  1999年   66篇
  1998年   25篇
  1997年   29篇
  1996年   18篇
  1995年   8篇
  1994年   11篇
  1993年   21篇
  1992年   5篇
  1991年   9篇
  1990年   12篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1984年   3篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1971年   1篇
排序方式: 共有2767条查询结果,搜索用时 15 毫秒
161.
Jin, Xin and Venkataramana Sridhar, 2012. Impacts of Climate Change on Hydrology and Water Resources in the Boise and Spokane River Basins. Journal of the American Water Resources Association (JAWRA) 48(2): 197‐220. DOI: 10.1111/j.1752‐1688.2011.00605.x Abstract: In the Pacific Northwest, warming climate has resulted in a lengthened growing season, declining snowpack, and earlier timing of spring runoff. This study characterizes the impact of climate change in two basins in Idaho, the Spokane River and the Boise River basins. We simulated the basin‐scale hydrology by coupling the downscaled precipitation and temperature outputs from a suite of global climate models and the Soil and Water Assessment Tool (SWAT), between 2010 and 2060 and assess the impacts of climate change on water resources in the region. For the Boise River basin, changes in precipitation ranged from ?3.8 to 36%. Changes in temperature were expected to be between 0.02 and 3.9°C. In the Spokane River region, changes in precipitation were expected to be between ?6.7 and 17.9%. Changes in temperature appeared between 0.1 and 3.5°C over a period of the next five decades between 2010 and 2060. Without bias‐correcting the simulated streamflow, in the Boise River basin, change in peak flows (March through June) was projected to range from ?58 to +106 m3/s and, for the Spokane River basin, the range was expected to be from ?198 to +88 m3/s. Both the basins exhibited substantial variability in precipitation, evapotranspiration, and recharge estimates, and this knowledge of possible hydrologic impacts at the watershed scale can help the stakeholders with possible options in their decision‐making process.  相似文献   
162.
Abstract: Water supply uncertainty continues to threaten the reliability of regional water resources in the western United States. Climate variability and water dispute potentials induce water managers to develop proactive adaptive management strategies to mitigate future hydroclimate impacts. The Eastern Snake Plain Aquifer in the state of Idaho is also facing these challenges in the sense that population growth and economic development strongly depend on reliable water resources from underground storage. Drought and subsequent water conflict often drive scientific research and political agendas because water resources availability and aquifer management for a sustainable rural economy are of great interest. In this study, a system dynamics approach is applied to address dynamically complex problems with management of the aquifer and associated surface‐water and groundwater interactions. Recharge and discharge dynamics within the aquifer system are coded in an environmental modeling framework to identify long‐term behavior of aquifer responses to uncertain future hydrological variability. The research shows that the system dynamics approach is a promising modeling tool to develop sustainable water resources planning and management in a collaborative decision‐making framework and also to provide useful insights and alternative opportunities for operational management, policy support, and participatory strategic planning to mitigate future hydroclimate impacts in human dimensions.  相似文献   
163.
通过单因素试验和正交试验确定了实验室保藏的壬基酚降解菌株沙雷氏菌(Serratiasp.LJ)的最佳产酶条件:以壬基酚、硫酸铵为碳源、氮源,培养基初始pH为6.8,培养温度为30℃,种子活化时间为24h,接种量为3%(体积分数)。在此条件下培养72h后,最高酶活力为1.314IU/mL,是优化前的1.77倍。  相似文献   
164.
针对维生素C生产工艺中产生的凝结水产量大、处理成本高、存储运输困难和营养物质含量偏低等问题,采用反渗透技术对VC凝结水进行处理。实验建立小试规模反渗透膜处理装置,采用无量纲化多元回归分析方法,分析了操作条件指标与渗透水评价指标两套指标体系之间的关系,定量评价了各个操作条件指标对渗透水评价指标的整体影响程度,并在此基础上研究了最佳操作条件的工艺参数。结果表明:建立的无量纲化多元回归分析方法切实有效,在正交实验设计水平范围内,压力、pH和回流比均是多目标系统的影响因子,操作条件指标对渗透水评价指标的整体影响程度大小顺序为:压力〉pH〉回流比〉温度,且各自影响程度所占比例分别为43.02%、29.01%、25.07%和2.89%。各个操作因子对多指标系统的影响是独立的。在只考虑系统收益而不考虑膜污染的情况下,最佳操作条件分别为:温度r=30.65,压力P=1.5MPa,回流比r=0.78,pH=7.475。  相似文献   
165.
This study investigated the degradation of rizazole in water-sediment systems (West Lake system, WL; Beijing–Hangzhou Grand Canal system, BG) with two different types of sediments under aerobic and anaerobic conditions. The half-lives of rizazole in the WL water phase (14.59–15.13 d) were similar to those in the BG water phase (15.90–16.46 d). Within 3–7 d, the rizazole concentration in the sediments reached the maximum values, i.e., equilibrium. Rizazole dissipation was faster in the WL sediment phase with higher organic matter content (T1/2 = 18.99–19.09 d) compared with the BG sediment phase (T1/2 = 31.08–33.32 d). Rizazole degradation was slightly faster in the West Lake water-sediment system (WL system) (T1/2 = 17.11–18.05 d) than in the Beijing–Hangzhou Grand Canal water—sediment system (BG system) (T1/2 = 20.51–25.02 d). The aerobic degradation of rizazole was similar to its anaerobic degradation in the water-sediment system. The findings are useful to understand the behavior of pesticide in environment.  相似文献   
166.
The REDD+ (Reducing Emissions from Deforestation and Forest Degradation) partnership works to promote the reduction of greenhouse gas (GHG) emissions by protecting forests in developing countries through positive incentives. It is regarded as an essential component of the post‐2012 climate regime to stabilize GHG emissions and engage developing countries in worldwide mitigation endeavours. This study focuses on the gap between agricultural revenue and REDD+ compensation through the construction of several scenarios that explore the impacts of possible carbon price ranges.Three scenarios that reflect different potential policies are examined: (1) current carbon trading; (2) carbon trading with all forestry activities; and (3) carbon trading with all countries participating gradually over the coming decades. Data for developing the scenarios were obtained through a case study in central Kalimantan, Indonesia, by interrogating the potential for revenue by expanding agricultural land. The results indicate that REDD+ payments could not effectively compensate land users for their opportunity cost of deforestation, making it difficult for the governments to ensure that REDD+ money “reaches the ground” in terms of balancing the agricultural revenue of land users.  相似文献   
167.
Abstract: This work develops a methodology to project the future precipitation in large river basins under limited data and climate change while preserving the historical temporal and spatial characteristics. The computationally simple and reliable conditional generation method (CGM) is presented and applied to generate reliable monthly precipitation data in the upper Blue Nile River Basin of Ethiopia where rain‐fed agriculture is prevalent. The results showed that the temporal analysis with the CGM performs better to reproduce the historical long‐term characteristics than other methods, and the spatial analysis with the CGM reproduced the historical spatial structure accurately. A 100‐year time series analysis using the outcomes of the six general circulation models showed that precipitation changes by the 2050s (2040 through 2069) can be ?7 to 28% with a mean increase of about 11%. The seasonal results showed increasing wet conditions in all seasons with changes of mean precipitation of 5, 47, and 6% for wet, dry, and mild seasons, respectively.  相似文献   
168.

Problem

Psychometrically validated measurement tools are needed to evaluate an organization's safety climate. In 2000, Gershon and colleagues published a new healthcare safety climate measurement tool to determine its relationship to safe work behavior (Gershon, R., Karkashian, C., Grosch, J., Murphy, L., Escamilla-Cejudo, A., Flanagan, P., et al. (2000). Hospital safety climate and its relationship with safe work practices and workplace exposure incidents. American Journal of Infection Control, 28, 211-21). The present study evaluated the psychometric properties of the Gershon tool when modified to address respiratory rather than bloodborne pathogen exposures.

Method

Medical practitioners, nurses, and nurse aides (n = 460) were surveyed using the modified Gershon tool. Data were analyzed by factor analysis and psychometric properties of the tool evaluated.

Results

Eight safety climate dimensions were extracted from 25 items (Cronbach's alpha range: 0.62 - 0.88). Factor extractions and psychometric properties were reasonably consistent with those of the Gershon tool.

Impact on Industry

The Gershon safety climate tool appears to have sufficient reliability and validity for use by healthcare decision makers as an indicator of employee perceptions of safety in their institution.  相似文献   
169.
170.
A lysimeter study was performed to monitor effects of elevated ozone on juvenile trees of Fagus sylvatica L. as well as on the plant–soil system. During a fumigation period over almost three growing seasons, parameters related to plant growth, phenological development and physiology as well as soil functions were studied. The data analyses identified elevated ozone to delay leaf phenology at early and to accelerate it at late developmental stages, to reduce growth, some leaf nutrients (Ca, K) as well as some soluble phenolics (hydroxycinnamic acid derivatives, total flavonol glycosides). No or very weak ozone effects were found in mobile carbon pools of leaves (starch, sucrose), and other phenolic compounds (flavans). Altered gene expression related to stress and carbon cycling corresponded well with findings from leaf phenology and chemical composition analyses indicating earlier senescence and oxidative stress in leaves under elevated ozone. Conversely in the soil system, no effects of ozone were detected on soil enzyme activities, rates of litter degradation and lysimeter water balances. Despite the fact that the three reported years 2003–2005 were climatically very contrasting including a hot and dry as well as an extremely wet summer, and also mild as well as cold winters, the influence of ozone on a number of plant parameters is remarkably consistent, further underlining the phytotoxic potential of elevated tropospheric ozone levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号