首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2323篇
  免费   245篇
  国内免费   185篇
安全科学   193篇
废物处理   17篇
环保管理   603篇
综合类   833篇
基础理论   366篇
环境理论   54篇
污染及防治   26篇
评价与监测   105篇
社会与环境   396篇
灾害及防治   160篇
  2024年   17篇
  2023年   75篇
  2022年   100篇
  2021年   102篇
  2020年   108篇
  2019年   144篇
  2018年   129篇
  2017年   146篇
  2016年   136篇
  2015年   139篇
  2014年   78篇
  2013年   215篇
  2012年   142篇
  2011年   146篇
  2010年   118篇
  2009年   86篇
  2008年   75篇
  2007年   87篇
  2006年   94篇
  2005年   66篇
  2004年   74篇
  2003年   62篇
  2002年   56篇
  2001年   49篇
  2000年   81篇
  1999年   62篇
  1998年   25篇
  1997年   31篇
  1996年   19篇
  1995年   11篇
  1994年   10篇
  1993年   19篇
  1992年   8篇
  1991年   12篇
  1990年   10篇
  1989年   4篇
  1988年   5篇
  1987年   3篇
  1986年   2篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
  1971年   1篇
排序方式: 共有2753条查询结果,搜索用时 390 毫秒
331.
2005~2006年三亚鹿回头珊瑚礁现状调查共记录石珊瑚13科24属69种,礁坪以滨珊瑚占绝对优势(重要值百分比>50%),礁坡以鹿角珊瑚最占优势(28.33%).Pielou、Simpson和Shannon-Wiener多样性指数值均高于礁坪.对比历史资料发现近50 a来该岸段珊瑚礁呈衰退趋势:七世纪五六十年代该岸段珊瑚种类繁多、群落垂直分带,生物多样性较高;20世纪七八十年代礁坪已不见成片的活珊瑚,礁坡繁茂程度降低;20世纪90年代珊瑚种类虽仍比较丰富,但总体多样性下降;本次研究显示澄黄滨珊瑚已成为礁坪优势种,鹿角珊瑚在礁坡的优势度降低,物种多样性继续缩减.过度捕捞、大规模挖礁、海上和沿岸养殖等人类活动是造成该岸段珊瑚礁现有衰退的主要原凶,三亚河和近海上程建设带来的泥沙和污染物以及正向鹿回头扩展的潜水旅游可能是影响其发展的潜在威胁.  相似文献   
332.
Introduction: The phenomenon that construction workers do not use personal protective equipment (PPE) is a major reason for the high occurrence frequency of accidents in the construction industry. However, little efforts have been made to quantitatively examine the factors influencing construction workers’ acceptance of PPE. Method: In the current study, a PPE acceptance model for construction workers (PAMCW) was proposed to address the noted need. The PAMCW incorporates the technology acceptance model, theory of planned behavior, risk perception, and safety climate for explaining construction worker acceptance of PPE. 413 construction workers participated in this study to fill out a structured questionnaire. The PAMCW was analyzed using structural equation modeling. Results: Results provide evidence of the applicability of the technology acceptance model and theory of planned behavior to the PPE acceptance among construction workers. The positive influence of safety climate and risk perception-severity on attitude toward using PPE was significant. Safety climate positively influences perceived usefulness. Risk perception-worry and unsafe was found to positively affect intention to use PPE. Practical Applications: Practical suggestions for increasing construction workers’ use of PPE are also discussed.  相似文献   
333.
The High Plains Aquifer (HPA) underlies parts of eight states and 208 counties in the central area of the United States (U.S.). This region produces more than 9% of U.S. crops sales and relies on the aquifer for irrigation. However, these withdrawals have diminished the stock of water in the aquifer. In this paper, we investigate the aggregate county‐level effect on the HPA of groundwater withdrawal for irrigation, of climate variables, and of energy price changes. We merge economic theory and hydrological characteristics to jointly estimate equations describing irrigation behavior and a generalized water balance equation for the HPA. Our simple water balance model predicts, at average values for irrigation and precipitation, an HPA‐wide average decrease in the groundwater table of 0.47 feet per year, compared to 0.48 feet per year observed on average across the HPA during this 1985–2005 period. The observed distribution and predicted change across counties is in the (?3.22, 1.59) and (?2.24, 0.60) feet per year range, respectively. The estimated impact of irrigation is to decrease the water table by an average of 1.24 feet per year, whereas rainfall recharges the level by an average of 0.76 feet per year. Relative to the past several decades, if groundwater use is unconstrained, groundwater depletion would increase 50% in a scenario where precipitation falls by 25% and the number of degree days above 36°C doubles. Editor’s note : This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series.  相似文献   
334.
The Ganges Delta in Bangladesh is an example of water‐related catastrophes in a major rural river basin where limitations in quantity, quality, and timing of available water are producing disastrous conditions. Water availability limitations are modifying the hydrologic characteristics especially when water allocation is controlled from the upstream Farakka Barrage. This study presents the changes and consequences in the hydrologic regime due to climate‐ and human‐induced stresses. Flow duration curves (FDCs), rainfall elasticity, and temperature sensitivity were used to assess the pre‐ and post‐barrage water flow patterns. Hydrologic and climate indices were computed to provide insight on hydro‐climatic variability and trend. Significant increases in temperature, evapotranspiration, hot days, heating, and cooling degree days indicate the region is heading toward a warmer climate. Moreover, increase in high‐intensity rainfall of short duration is making the region prone to extreme floods. FDCs depict a large reduction in river flows between pre‐ and post‐barrage periods, resulting in lower water storage capacity. The reduction in freshwater flow increased the extent and intensity of salinity intrusion. This freshwater scarcity is reducing livelihood options considerably and indirectly forcing population migration from the delta region. Understanding the causes and directions of hydrologic changes is essential to formulate improve water resources management in the region.  相似文献   
335.
Anticipating changes in hydrologic variables is essential for making socioeconomic water resource decisions. This study aims to assess the potential impact of land use and climate change on the hydrologic processes of a primarily rain‐fed, agriculturally based watershed in Missouri. A detailed evaluation was performed using the Soil and Water Assessment Tool for the near future (2020–2039) and mid‐century (2040–2059). Land use scenarios were mapped using the Conversion of Land Use and its Effects model. Ensemble results, based on 19 climate models, indicated a temperature increase of about 1.0°C in near future and 2.0°C in mid‐century. Combined climate and land use change scenarios showed distinct annual and seasonal hydrologic variations. Annual precipitation was projected to increase from 6% to 7%, which resulted in 14% more spring days with soil water content equal to or exceeding field capacity in mid‐century. However, summer precipitation was projected to decrease, a critical factor for crop growth. Higher temperatures led to increased potential evapotranspiration during the growing season. Combined with changes in precipitation patterns, this resulted in an increased need for irrigation by 38 mm representing a 10% increase in total irrigation water use. Analysis from multiple land use scenarios indicated converting agriculture to forest land can potentially mitigate the effects of climate change on streamflow, thus ensuring future water availability.  相似文献   
336.
The potential impacts driven by climate variability and urbanization in the Boise River Watershed (BRW), located in southwestern Idaho, are evaluated. The outcomes from Global Circulation Models (GCMs) and land use and land cover (LULC) analysis have been incorporated into a hydrological and environmental modeling framework to characterize how climate variability and urbanization can affect the local hydrology and environment at the BRW. The combined impacts of future climate and LULC change are also evaluated relative to the historical baseline conditions. For modeling exercises, Hydrological Simulation Program‐Fortran (HSPF) is used in parallel computing and statistical techniques, including spatial downscaling and bias correlation, are employed to evaluate climate consequences derived from GCMs as well. The implications of climate variability and land use change driven by urbanization are then observed to evaluate how these overall global challenges can affect water quantity and quality conditions at the BRW. The results show the combined impacts of both climate change and urbanization can lead to more seasonal variability of streamflow (from ?27.5% to 12.5%) and water quality, including sediment (from ?36.5% to 49.3%), nitrogen (from ?24% to 124.2%), and phosphorus (from ?13.3% to 21.2%) during summer and early fall over the next several decades.  相似文献   
337.
中国西南喀斯特森林土壤有机碳空间变化及影响因素   总被引:4,自引:0,他引:4  
喀斯特地区土壤碳储量及其影响因素的认识是评估我国陆地土壤生态系统碳汇能力不可或缺的内容。本文通过对中国西南北起秦岭北坡南至中越边境一条剖面上土壤有机碳的分析,研究了喀斯特森林0~10cm土壤有机碳空间变化及其控制因素。研究发现西南地区土壤有机碳含量和碳密度平均为32.3 g/kg和33.1t/hm2。无论是在整个西南区还是其省市范围内,二者均低于非喀斯特森林土壤。通径分析表明,影响喀斯特表层土壤碳含量和密度的主要因素有土壤容重、地形海拔和有机质C/N;粘粒含量和年平均气温的影响很小,而降水量仅在地处最北部的陕西省构成了土壤碳密度的影响因素。此现象与世界许多地区特别是高纬度地区形成鲜明对比。本研究结果表明,不同区域/气候带土壤碳库的主要影响因素会存在很大差异,这对认识气候变化背景下土壤碳库的反馈作用具有重要意义。  相似文献   
338.
We investigate the sensitivity of phosphorus loading (mass/time) in an urban stream to variations in climate using nondimensional sensitivity, known as elasticity, methods commonly used by economists and hydrologists. Previous analyses have used bivariate elasticity methods to represent the general relationship between nutrient loading and a variable of interest, but such bivariate relations cannot reflect the complex multivariate nonlinear relationships inherent among nutrients, precipitation, temperature, and streamflow. Using fixed‐effect multivariate regression methods, we obtain two phosphorus models (nonparametric and parametric) for an urban stream with high explanatory power that can both estimate phosphorus loads and the elasticity of phosphorus loading to changes in precipitation, temperature, and streamflow. A case study demonstrates total phosphorus loading depends significantly on season, rainfall, combined sewer overflow events, and flow rate, yet the elasticity of total phosphorus to all these factors remains relatively constant throughout the year. The elasticity estimates reported here can be used to examine how nutrient loads may change under future climate conditions.  相似文献   
339.
340.
Global greenhouse gas emissions from air travel (GHG-A) are on the rise, and projections point towards a rapid growth in the coming decades. This study aims to examine how local government (cities), addresses GHG-A in their Sustainable Energy Action Plans (SEAP). To fulfil this aim, over 200 SEAPs were analysed focusing on three issues: (1) Treatment of GHG-A in local emissions inventories; (2) Policy initiatives within this domain; and (3) The cities’ perceptions of the conflicts of interests. Results showed that more than half of the cities acknowledge the challenge of GHG-A, around one third include GHG-A in their emissions inventories, and more than one quarter have initiated policy interventions. To categorise these interventions, we have added a mode ‘governing by agenda setting’ to an existing analytical framework, ‘Modes of governing’. With their authority limited to the local setting, this mode of governing is a common channel for cities to push changes at higher levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号