首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2323篇
  免费   245篇
  国内免费   185篇
安全科学   193篇
废物处理   17篇
环保管理   603篇
综合类   833篇
基础理论   366篇
环境理论   54篇
污染及防治   26篇
评价与监测   105篇
社会与环境   396篇
灾害及防治   160篇
  2024年   17篇
  2023年   75篇
  2022年   100篇
  2021年   102篇
  2020年   108篇
  2019年   144篇
  2018年   129篇
  2017年   146篇
  2016年   136篇
  2015年   139篇
  2014年   78篇
  2013年   215篇
  2012年   142篇
  2011年   146篇
  2010年   118篇
  2009年   86篇
  2008年   75篇
  2007年   87篇
  2006年   94篇
  2005年   66篇
  2004年   74篇
  2003年   62篇
  2002年   56篇
  2001年   49篇
  2000年   81篇
  1999年   62篇
  1998年   25篇
  1997年   31篇
  1996年   19篇
  1995年   11篇
  1994年   10篇
  1993年   19篇
  1992年   8篇
  1991年   12篇
  1990年   10篇
  1989年   4篇
  1988年   5篇
  1987年   3篇
  1986年   2篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
  1971年   1篇
排序方式: 共有2753条查询结果,搜索用时 125 毫秒
811.
Facultative joint colony founding by social insects provides opportunities to analyze the roles of genetic and ecological factors in the evolution of cooperation. Although cooperative nesting is observed in range of social insect taxa, the most detailed studies of this behavior have been conducted with Hymenoptera (ants, bees, and wasps). Here, we show that foundress associations in the haplodiploid social thrips Dunatothrips aneurae (Insecta: Thysanoptera) are most often comprised of close relatives (sisters), though groups with unrelated foundresses are also found. Associations among relatives appear to be facilitated by limited female dispersal, which results in viscous population structure. In addition, we found that per capita productivity declined with increasing group size, sex ratios were female-biased, and some female offspring apparently remained in their natal domicile for some time following eclosion. D. aneurae thus exhibits a suite of similarities with eusocial Hymenoptera, providing evidence for the convergent evolution of associated social and life-history traits in Hymenoptera and Thysanoptera.  相似文献   
812.
An Assessment of Invasion Risk from Assisted Migration   总被引:4,自引:0,他引:4  
Abstract:  To reduce the risk of extinction due to climate change, some ecologists have suggested human-aided translocation of species, or assisted migration (AM), to areas where climate is projected to become suitable. Such intentional movement, however, may create new invasive species if successful introductions grow out of control and cause ecologic or economic damage. We assessed this risk by surveying invasive species in the United States and categorizing invaders based on origin. Because AM will involve moving species on a regional scale within continents (i.e., range shifts), we used invasive species with an intracontinental origin as a proxy for species that would be moved through AM. We then determined whether intracontinental invasions were more prevalent or harmful than intercontinental invasions. Intracontinental invasions occurred far less frequently than invasions from other continents, but they were just as likely to have had severe effects. Fish and crustaceans pose a particularly high threat of intracontinental invasion. We conclude that the risk of AM to create novel invasive species is small, but assisted species that do become invasive could have large effects. Past experience with species reintroductions may help inform policy regarding AM.  相似文献   
813.
Abstract:  The difficult task of managing species of conservation concern is likely to become even more challenging due to the interaction of climate change and invasive species. In addition to direct effects on habitat quality, climate change will foster the expansion of invasive species into new areas and magnify the effects of invasive species already present by altering competitive dominance, increasing predation rates, and enhancing the virulence of diseases. In some cases parapatric species may expand into new habitats and have detrimental effects that are similar to those of invading non-native species. The traditional strategy of isolating imperiled species in reserves may not be adequate if habitat conditions change beyond historic ranges or in ways that favor invasive species. The consequences of climate change will require a more active management paradigm that includes implementing habitat improvements that reduce the effects of climate change and creating migration barriers that prevent an influx of invasive species. Other management actions that should be considered include providing dispersal corridors that allow species to track environmental changes, translocating species to newly suitable habitats where migration is not possible, and developing action plans for the early detection and eradication of new invasive species.  相似文献   
814.
Five Potential Consequences of Climate Change for Invasive Species   总被引:3,自引:0,他引:3  
Abstract:  Scientific and societal unknowns make it difficult to predict how global environmental changes such as climate change and biological invasions will affect ecological systems. In the long term, these changes may have interacting effects and compound the uncertainty associated with each individual driver. Nonetheless, invasive species are likely to respond in ways that should be qualitatively predictable, and some of these responses will be distinct from those of native counterparts. We used the stages of invasion known as the "invasion pathway" to identify 5 nonexclusive consequences of climate change for invasive species: (1) altered transport and introduction mechanisms, (2) establishment of new invasive species, (3) altered impact of existing invasive species, (4) altered distribution of existing invasive species, and (5) altered effectiveness of control strategies. We then used these consequences to identify testable hypotheses about the responses of invasive species to climate change and provide suggestions for invasive-species management plans. The 5 consequences also emphasize the need for enhanced environmental monitoring and expanded coordination among entities involved in invasive-species management.  相似文献   
815.
The objective of this article was to assess flood vulnerability based on the representative concentration pathways (RCP) scenarios at city and county levels. A quantile mapping method was adopted to correct bias that is inherent in climate change scenarios. A series of proxy variables related to climate exposure, sensitivity, and adaptive capacity were chosen to assess flood vulnerability. Proxy variables were standardized using the Z‐score method. Principal component analysis was carried out to calculate the weighting of proxy variables. The study area was the Korean peninsula. The spatial resolution was on a city and county basis and the temporal resolution was 1990s, 2025s, 2055s, and 2085s (divided into 1976‐2005, 2011‐2040, 2041‐2070, and 2071‐2100). In the spatial comparison, we found that the areas with high‐level flood vulnerability increased over time in the central region, including metropolitan areas, and near the southern coast. In the temporal comparison, we found that the RCP4.5 scenario showed a tendency to increase steadily and the RCP8.5 scenario showed a tendency to decrease in the 2055s slightly and increase again in the 2085s. The study findings may provide useful data for the determination of priority for countermeasure development, though robustness of these findings with additional future projections should be established.  相似文献   
816.
Climate changes impose requirements for many species to shift their ranges to remain within environmentally tolerable areas, but near‐continuous regions of intense human land use stretching across continental extents diminish dispersal prospects for many species. We reviewed the impact of habitat loss and fragmentation on species’ abilities to track changing climates and existing plans to facilitate species dispersal in response to climate change through regions of intensive land uses, drawing on examples from North America and elsewhere. We identified an emerging analytical framework that accounts for variation in species' dispersal capacities relative to both the pace of climate change and habitat availability. Habitat loss and fragmentation hinder climate change tracking, particularly for specialists, by impeding both propagule dispersal and population growth. This framework can be used to identify prospective modern‐era climatic refugia, where the pace of climate change has been slower than surrounding areas, that are defined relative to individual species' needs. The framework also underscores the importance of identifying and managing dispersal pathways or corridors through semi‐continental land use barriers that can benefit many species simultaneously. These emerging strategies to facilitate range shifts must account for uncertainties around population adaptation to local environmental conditions. Accounting for uncertainties in climate change and dispersal capabilities among species and expanding biological monitoring programs within an adaptive management paradigm are vital strategies that will improve species' capacities to track rapidly shifting climatic conditions across landscapes dominated by intensive human land use.  相似文献   
817.
Although Dutch cities were among the forerunners in local climate policy, a systematic overview on climate mitigation and adaptation policy is still missing. This study aims to fill this gap by analysing 25 Dutch cities using indicators for the level of anchoring in policy, organisation and practical implementation as well as multi-level relations. Since Tilburg, Amsterdam, Den Haag and Rotterdam show a higher performance than other Dutch cities, these four cities are used as reference cities. The findings suggest that structural integration of climate mitigation and adaptation is limited in Dutch cities. The study points at three recent trends in local climate governance in the Netherlands: (i) decentralisation within municipal organisations, (ii) externalisation initiatives that place climate policy outside the municipal organisation and (iii) regionalisation with neighbouring municipalities and the provincial government.  相似文献   
818.
Methane generated at landfills contributes to global warming and can be mitigated by biocover systems relying on microbial methane oxidation. As part of a closure plan for an old unlined landfill without any gas management measures, an innovative biocover system was established. The system was designed based on a conceptual model of the gas emission patterns established through an initial baseline study. The study included construction of gas collection trenches along the slopes of the landfill where the majority of the methane emissions occurred. Local compost materials were tested as to their usefulness as bioactive methane oxidizing material and a suitable compost mixture was selected. Whole site methane emission quantifications based on combined tracer release and downwind measurements in combination with several local experimental activities (gas composition within biocover layers, flux chamber based emission measurements and logging of compost temperatures) proved that the biocover system had an average mitigation efficiency of approximately 80%. The study showed that the system also had a high efficiency during winter periods with temperatures below freezing. An economic analysis indicated that the mitigation costs of the biocover system were competitive to other existing greenhouse gas mitigation options.  相似文献   
819.
Conservation of representative facets of geophysical diversity may help conserve biological diversity as the climate changes. We conducted a global classification of terrestrial geophysical diversity and analyzed how land protection varies across geophysical diversity types. Geophysical diversity was classified in terms of soil type, elevation, and biogeographic realm and then compared to the global distribution of protected areas in 2012. We found that 300 (45%) of 672 broad geophysical diversity types currently meet the Convention on Biological Diversity's Aichi Target 11 of 17% terrestrial areal protection, which suggested that efforts to implement geophysical diversity conservation have a substantive basis on which to build. However, current protected areas were heavily biased toward high elevation and low fertility soils. We assessed 3 scenarios of protected area expansion and found that protection focused on threatened species, if fully implemented, would also protect an additional 29% of geophysical diversity types, ecoregional‐focused protection would protect an additional 24%, and a combined scenario would protect an additional 42%. Future efforts need to specifically target low‐elevation sites with productive soils for protection and manage for connectivity among geophysical diversity types. These efforts may be hampered by the sheer number of geophysical diversity facets that the world contains, which makes clear target setting and prioritization an important next step.  相似文献   
820.
Modern society uses massive amounts of energy. Usage rises as population and affluence increase, and energy production and use often have an impact on biodiversity or natural areas. To avoid a business‐as‐usual dependence on coal, oil, and gas over the coming decades, society must map out a future energy mix that incorporates alternative sources. This exercise can lead to radically different opinions on what a sustainable energy portfolio might entail, so an objective assessment of the relative costs and benefits of different energy sources is required. We evaluated the land use, emissions, climate, and cost implications of 3 published but divergent storylines for future energy production, none of which was optimal for all environmental and economic indicators. Using multicriteria decision‐making analysis, we ranked 7 major electricity‐generation sources (coal, gas, nuclear, biomass, hydro, wind, and solar) based on costs and benefits and tested the sensitivity of the rankings to biases stemming from contrasting philosophical ideals. Irrespective of weightings, nuclear and wind energy had the highest benefit‐to‐cost ratio. Although the environmental movement has historically rejected the nuclear energy option, new‐generation reactor technologies that fully recycle waste and incorporate passive safety systems might resolve their concerns and ought to be more widely understood. Because there is no perfect energy source however, conservation professionals ultimately need to take an evidence‐based approach to consider carefully the integrated effects of energy mixes on biodiversity conservation. Trade‐offs and compromises are inevitable and require advocating energy mixes that minimize net environmental damage. Society cannot afford to risk wholesale failure to address energy‐related biodiversity impacts because of preconceived notions and ideals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号