首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2250篇
  免费   184篇
  国内免费   220篇
安全科学   128篇
废物处理   20篇
环保管理   666篇
综合类   740篇
基础理论   402篇
环境理论   54篇
污染及防治   61篇
评价与监测   103篇
社会与环境   324篇
灾害及防治   156篇
  2024年   8篇
  2023年   67篇
  2022年   57篇
  2021年   77篇
  2020年   84篇
  2019年   119篇
  2018年   118篇
  2017年   132篇
  2016年   126篇
  2015年   134篇
  2014年   84篇
  2013年   224篇
  2012年   138篇
  2011年   138篇
  2010年   125篇
  2009年   84篇
  2008年   80篇
  2007年   85篇
  2006年   103篇
  2005年   66篇
  2004年   78篇
  2003年   62篇
  2002年   50篇
  2001年   49篇
  2000年   78篇
  1999年   61篇
  1998年   28篇
  1997年   36篇
  1996年   23篇
  1995年   12篇
  1994年   12篇
  1993年   22篇
  1992年   6篇
  1991年   10篇
  1990年   11篇
  1989年   8篇
  1988年   4篇
  1987年   5篇
  1986年   5篇
  1985年   3篇
  1984年   3篇
  1983年   7篇
  1982年   4篇
  1981年   4篇
  1980年   6篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1972年   2篇
  1971年   4篇
排序方式: 共有2654条查询结果,搜索用时 203 毫秒
561.
Abstract:  Recent episodes of coral bleaching have led to wide-scale loss of reef corals and raised concerns over the effectiveness of existing conservation and management efforts. The 1998 bleaching event was most severe in the western Indian Ocean, where coral declined by up to 90% in some locations. Using fisheries-independent data, we assessed the long-term impacts of this event on fishery target species in the Seychelles, the overall size structure of the fish assemblage, and the effectiveness of two marine protected areas (MPAs) in protecting fish communities. The biomass of fished species above the size retained in fish traps changed little between 1994 and 2005, indicating no current effect on fishery yields. Biomass remained higher in MPAs, indicating they were effective in protecting fish stocks. Nevertheless, the size structure of the fish communities, as described with size-spectra analysis, changed in both fished areas and MPAs, with a decline in smaller fish (<30 cm) and an increase in larger fish (>45 cm). We believe this represents a time-lag response to a reduction in reef structural complexity brought about because fishes are being lost through natural mortality and fishing, and are not being replaced by juveniles. This effect is expected to be greater in terms of fisheries productivity and, because congruent patterns are observed for herbivores, suggests that MPAs do not offer coral reefs long-term resilience to bleaching events. Corallivores and planktivores declined strikingly in abundance, particularly in MPAs, and this decline was associated with a similar pattern of decline in their preferred corals. We suggest that climate-mediated disturbances, such as coral bleaching, be at the fore of conservation planning for coral reefs.  相似文献   
562.
Motivations for the Restoration of Ecosystems   总被引:5,自引:0,他引:5  
Abstract:  The reasons ecosystems should be restored are numerous, disparate, generally understated, and commonly underappreciated. We offer a typology in which these reasons—or motivations—are ordered among five rationales: technocratic, biotic, heuristic, idealistic, and pragmatic. The technocratic rationale encompasses restoration that is conducted by government agencies or other large organizations to satisfy specific institutional missions and mandates. The biotic rationale for restoration is to recover lost aspects of local biodiversity. The heuristic rationale attempts to elicit or demonstrate ecological principles and biotic expressions. The idealistic rationale consists of personal and cultural expressions of concern or atonement for environmental degradation, reengagement with nature, and/or spiritual fulfillment. The pragmatic rationale seeks to recover or repair ecosystems for their capacity to provide a broad array of natural services and products upon which human economies depend and to counteract extremes in climate caused by ecosystem loss. We propose that technocratic restoration, as currently conceived and practiced, is too narrow in scope and should be broadened to include the pragmatic rationale whose overarching importance is just beginning to be recognized. We suggest that technocratic restoration is too authoritarian, that idealistic restoration is overly restricted by lack of administrative strengths, and that a melding of the two approaches would benefit both. Three recent examples are given of restoration that blends the technocratic, idealistic, and pragmatic rationales and demonstrates the potential for a more unified approach. The biotic and heuristic rationales can be satisfied within the contexts of the other rationales.  相似文献   
563.
Under the dry weather conditions in the typical steppe region of Inner Mongolia, the diurnal change curve of photosynthetic rate of Aneurolepidium chinense community is a curve of "double peaks" with midday depression. The photosynthetic rate in the morning is height than in the afternoon, which is related to the water condition at that time. The decrease range of community photosynthetic rate at noon is closely correlated with the low air relative humidity and soil moisture, the photosynthetic rate decreases less under better water condition.The instantaneous photosynthetic rate and diurnal net photosynthesis declined in dry condition, but they rised after irrigation or nitrogen-fertilization. Thus irrigation and fertilization is a effective way to improve grasslands and to raise grassland productivity.  相似文献   
564.
Revisit ocean thermal energy conversion system   总被引:1,自引:0,他引:1  
The earth, covered more than70.8% by the ocean, receives most of itsenergy from the sun. Solar energy istransmitted through the atmosphere andefficiently collected and stored in thesurface layer of the ocean, largely in thetropical zone. Some of the energy isre-emitted to the atmosphere to drive thehydrologic cycle and wind. The wind fieldreturns some of the energy to the ocean inthe form of waves and currents. Themajority of the absorbed solar energy isstored in vertical thermal gradients nearthe surface layer of the ocean, most ofwhich is in the tropical region. Thisthermal energy replenished each day by thesun in the tropical ocean represents atremendous pollution-free energy resourcefor human civilization. Ocean ThermalEnergy Conversion (OTEC) technology refersto a mechanical system that utilizes thenatural temperature gradient that exists inthe tropical ocean between the warm surfacewater and the deep cold water, to generateelectricity and produce other economicallyvaluable by-products. The science andengineering behind OTEC have been studiedin the US since the mid-seventies,supported early by the U.S. Government andlater by State and private industries.There are two general types of OTECdesigns: closed-cycle plants utilize theevaporation of a working fluid, such asammonia or propylene, to drive theturbine-generator, and open-cycle plantsuse steam from evaporated sea water to runthe turbine. Another commonly known design,hybrid plants, is a combination of the two.OTEC requires relatively low operation andmaintenance costs and no fossil fuelconsumption.OTEC system possesses a formidablepotential capacity for renewable energy andoffers a significant elimination ofgreenhouse gases in producing power. Inaddition to electricity and drinking water,an OTEC system can produce many valuableby-products and side-utilizations, such as:hydrogen, air-conditioning, ice,aquaculture, and agriculture, etc. Thepotential of these by-products, especiallydrinking water, aquaculture andmariculture, can easily translate intobillions of dollars in businessopportunities. The current status of theOTEC system definitely deserves to becarefully revisited. This paper willexamine recent major advancements intechnology, evaluate costs andeffectiveness, and assess the overallmarket environment of the OTEC system anddescribe its great renewable energypotential and overall benefits to thenations of the world.  相似文献   
565.
Changes towards environmental improvementsare becoming more politically acceptableglobally, especially in developedcountries. Society is slowly moving towardsseeking more sustainable productionmethods, waste minimisation, reduced airpollution from vehicles, distributed energygeneration, conservation of native forests,and reduction of greenhouse gas (GHG)emissions. Modern biomass, when used tosupply useful bioenergy services, has arole to play in each one of theseenvironmental drivers at both the large andsmall scales.This paper describes recent developments inbiomass supply and the technologies for itsconversion to bioenergy including biofuelsfor transport. It examines the economic,environmental and social benefits andidentifies barriers to bioenergy projectimplementation. Future opportunities forbiomass as a carbon (C) sink, a C offsetand a potential source of renewablehydrogen are discussed.Whether or not a bioenergy project iseconomically viable, as well as being trulyrenewable, sustainable and environmentallysound, is determined mainly by the sourceof biomass. The social benefits from usingbiomass are also valuable, though they areoften not clearly presented when proposingnew bioenergy projects or conductinganalyses of existing plants. Employmentrates per MWh or per GJ exceed those whenusing fossil fuel supplies to provide thesame energy service. `Ownership' bystakeholders and local communities at anearly stage in the development process isthe key to successful project developmentin order to share the benefits. Bioenergyhas a significant global role to play inthe mitigation of atmospheric GHG concentrations.  相似文献   
566.
567.
This paper performs an institutional analysis of the adaptation to climate change by ports, through a case study of the port of Vancouver, Canada. While previous literature has demonstrated the value of informal institutions for filling gaps left by formal institutions, the role of failed informal institutions has received less attention. Our analysis reveals how, in the case of an unprecedented challenge like climate adaptation, relying on informal institutions with less agency can actually erode the strength of existing institutions in a form of negative institutional plasticity. In this case, emerging polycentric governance was unsuccessful, unable to construct clearly demarcated responsibilities due to impedance by the path dependence of the current federalist system. The latter works well for traditional infrastructure investments with a closed pool of stakeholders, but not for ports where multiple scales of embeddedness, both horizontally and vertically, produce a collective action problem with no mechanism for resolution.  相似文献   
568.
This special issue contributes to scholarly debates about the role of cities in global climate governance, reflecting on the promise, limits, and politics of cities as agents of change. It takes an empirically-informed approach drawing on multiple diverse geographical and political contexts. Overall, the special issue aims to stimulate reflection and debate about where understanding and practice needs improvement to advance the role of cities in global climate governance. Key questions that are addressed in the special issue include: To what extent do real world experiences confirm or disconfirm the high expectations of cities as agents and sites of change in addressing global climate change as expressed in urban climate governance literature? In what ways do internal political dynamics of cities enable or constrain urban climate governance? How is climate governance in cities enabled and constrained by interactions with broader governance levels? In what ways can climate governance in cities be advanced through critical attention to the previous issues?  相似文献   
569.
Simulations of stream temperatures showed a wide range of future thermal regimes under a warming climate — from 2.9°C warmer to 7.6°C cooler than current conditions — depending primarily on shade from riparian vegetation. We used the stream temperature model, Heat Source, to analyze a 37‐km study segment of the upper Middle Fork John Day River, located in northeast Oregon, USA. We developed alternative future scenarios based on downscaled projections from climate change models and the composition and structure of native riparian forests. We examined 36 scenarios combining future changes in air temperature (ΔTair = 0°C, +2°C, and +4°C), stream discharge (ΔQ = ?30%, 0%, and +30%), and riparian vegetation (post‐wildfire with 7% shade, current vegetation with 19% shade, a young‐open forest with 34% shade, and a mature riparian forest with 79% effective shade). Shade from riparian vegetation had the largest influence on stream temperatures, changing the seven‐day average daily maximum temperature (7DADM) from +1°C to ?7°C. In comparison, the 7DADM increased by 1.4°C with a 4°C increase in air temperature and by 0.7°C with a 30% change in discharge. Many streams throughout the interior western United States have been altered in ways that have substantially reduced shade. The effect of restoring shade could result in future stream temperatures that are colder than today, even under a warmer climate with substantially lower late‐summer streamflow.  相似文献   
570.
Reference evapotranspiration (ETo) is an important hydrometeorological term widely used in understanding and projecting the hydrological effects of future climate and land use change. We conducted a case study in the Qinhuai River Basin that is dominated by a humid subtropical climate and mixed land uses in southern China. Long‐term (1961–2012) meteorological data were used to estimate ETo by the FAO‐56 Penman–Monteith model. The individual contribution from each meteorological variable to the trend of ETo was quantified. We found basin‐wide annual ETo decreased significantly (< 0.05) by 3.82 mm/yr during 1961–1987, due to decreased wind speed, solar radiation, vapor pressure deficit (VPD), and increased relative humidity (RH). However, due to the increased VPD and decreased RH, the ETo increased significantly (< 0.05) in spring, autumn, and annually at a rate of 2.55, 0.56, and 3.16 mm/yr during 1988–2012, respectively. The aerodynamic term was a dominant factor controlling ETo variation in both two periods. We concluded the key climatic controls on ETo have shifted as a result of global climate change during 1961–2012. The atmospheric demand, instead of air temperature alone, was a major control on ETo. Models for accurately predicting ETo and hydrological change under a changing climate must include VPD in the study region. The shifts of climatic control on the hydrological cycles should be considered in future water resource management in humid regions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号