首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2023篇
  免费   277篇
  国内免费   1288篇
安全科学   151篇
废物处理   304篇
环保管理   164篇
综合类   2092篇
基础理论   227篇
污染及防治   613篇
评价与监测   24篇
社会与环境   10篇
灾害及防治   3篇
  2024年   2篇
  2023年   50篇
  2022年   80篇
  2021年   107篇
  2020年   94篇
  2019年   95篇
  2018年   103篇
  2017年   91篇
  2016年   108篇
  2015年   141篇
  2014年   150篇
  2013年   186篇
  2012年   246篇
  2011年   205篇
  2010年   159篇
  2009年   196篇
  2008年   116篇
  2007年   228篇
  2006年   245篇
  2005年   175篇
  2004年   141篇
  2003年   136篇
  2002年   110篇
  2001年   86篇
  2000年   83篇
  1999年   56篇
  1998年   48篇
  1997年   34篇
  1996年   22篇
  1995年   22篇
  1994年   15篇
  1993年   21篇
  1992年   11篇
  1991年   7篇
  1990年   5篇
  1989年   5篇
  1988年   5篇
  1987年   2篇
  1986年   1篇
  1973年   1篇
排序方式: 共有3588条查询结果,搜索用时 672 毫秒
871.
Nickel recovered in the recycling process of Ni–Cd batteries was used as a main component of bath for electrodeposition of nickel onto carbon fabric in order to obtain C/Ni composite. A part of the obtained composite was additionally coated with a thin layer of palladium (C/Ni/Pd composite). All the materials were investigated to assess the possibility of their use in the processes of electrochemical storage (sorption/desorption) of hydrogen and electrochemical oxidation of methanol. The obtained results showed the composites to be active electrode materials in these processes. The electrodes exhibited high activity and cyclability, especially in the process of methanol oxidation due to electrocatalytic activity of both nickel deposited onto carbon fabric and the outer layer of porous palladium coating nickel substrate.  相似文献   
872.
Innovative simple method for the preparation of simonkolleite-TiO2 photocatalyst with different Zn contents was achieved. The prepared photocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), FT-IR, Raman and diffuse reflectance spectroscopy techniques. The photocatalytic activities of the materials were evaluated for the simultaneous detoxification of hexavalent chromium (Cr(VI)) and oxidation of organic compounds commonly present in wastewater under simulated solar light. The best photoreduction efficiency of Cr(VI) has been achieved at 1000 ppm simonkolleite-TiO2 photocatalyst of 5% Zn/TiO2 weight ratio, and pH value of 2.5 to enhance the adsorption onto catalyst surface. Photoreduction was significantly improved by using formic acid as holes scavenger owing to its chemical adsorption on the catalyst surface. Finally, 100% photoreduction of Cr(VI) could be achieved using formic/simonkolleite-TiO2 systems under sunlight.  相似文献   
873.
The oxidation of soil organic matter (SOM) and total petroleum hydrocarbon were investigated in two soils at eight different hydrogen peroxide (H2O2) concentrations to determine the optimal H2O2 dosage for the efficient remediation of soils contaminated by crude oil with minimal SOM removal. In our study, H2O2 concentrations up to 1100 mM increased the SOM destruction up to 10%–15% in the two soils while no improvement of the crude oil removal efficiencies was observed. The results indicate that the destruction of SOM significantly limits the oxidation of crude oil because SOM might consume H2O2 more effectively than crude oil at H2O2 concentrations above 1100 mM. In addition, H2O2 concentrations higher than 1100 mM were not expected for both soils because of the extremely rapid H2O2 decomposition, and low H2O2 utilization, of both soils.  相似文献   
874.
Sewage sludge from a biological wastewater treatment plant was converted into sewage sludge based activated carbon(SBAC) with Zn Cl2 as activation agent, which was used as a support for ferric oxides to form a catalyst(Fe Ox/SBAC) by a simple impregnation method.The new material was then used to improve the performance of Fenton oxidation of real biologically pretreated coal gasification wastewater(CGW). The results indicated that the prepared Fe Ox/SBAC significantly enhanced the pollutant removal performance in the Fenton process, so that the treated wastewater was more biodegradable and less toxic. The best performance was obtained over a wide p H range from 2 to 7, temperature 30°C, 15 mg/L of H2O2 and 1 g/L of catalyst, and the treated effluent concentrations of COD, total phenols,BOD5 and TOC all met the discharge limits in China. Meanwhile, on the basis of significant inhibition by a radical scavenger in the heterogeneous Fenton process as well as the evolution of FT-IR spectra of pollutant-saturated Fe Ox/BAC with and without H2O2, it was deduced that the catalytic activity was responsible for generating hydroxyl radicals, and a possible reaction pathway and interface mechanism were proposed. Moreover, Fe Ox/SBAC showed superior stability over five successive oxidation runs. Thus, heterogeneous Fenton oxidation of biologically pretreated CGW by Fe Ox/SBAC, with the advantages of being economical, efficient and sustainable, holds promise for engineering application.  相似文献   
875.
876.
877.
A key step in sludge treatment is sludge dewatering. However, activated sludge is generally very difficult to be dewatered. Sludge dewatering performance is largely affected by the sludge moisture distribution. Sludge disintegration can destroy the sludge structure and cell wall, so as change the sludge floc structure and moisture distribution, thus affecting the dewatering performance of sludge. In this article, the disintegration methods were ultrasound treatment, K2FeO4 oxidation and KMnO4 oxidation. The degree of disintegration (DDCOD), sludge moisture distribution and the final water content of sludge cake after centrifuging were measured. Results showed that three disintegration methods were all effective, and K2FeO4 oxidation was more efficient than KMnO4 oxidation. The content of free water increased obviously with K2FeO4 and KMnO4 oxidations, while it decreased with ultrasound treatment. The changes of free water and interstitial water were in the opposite trend. The content of bounding water decreased with K2FeO4 oxidation, and increased slightly with KMnO4 oxidation, while it increased obviously with ultrasound treatment. The water content of sludge cake after centrifuging decreased with K2FeO4 oxidation, and did not changed with KMnO4 oxidation, but increased obviously with ultrasound treatment. In summary, ultrasound treatment deteriorated the sludge dewaterability, while K2FeO4 and KMnO4 oxidation improved the sludge dewaterability.  相似文献   
878.
A novel joint method of bioleaching with Fenton oxidation was applied to condition sewage sludge. The specific resistance to filtration (SRF) and moisture of sludge cake (MSC) were adopted to evaluate the improvement of sludge dewaterability. After 2-day bioleaching, the sludge pH dropped to about 2.5 which satisfied the acidic condition for Fenton oxidation. Meanwhile, the SRF declined from 6.45 × 1010 to 2.07 × 1010 s2/g, and MSC decreased from 91.42% to 87.66%. The bioleached sludge was further conditionedwith Fenton oxidation. From an economical point of view, the optimal dosages of H2O2 and Fe2+ were 0.12 and 0.036 mol/L, respectively, and the optimal reaction time was 60 min. Under optimal conditions, SRF, volatile solids reduction, and MSC were 3.43 × 108 s2/g, 36.93%, and 79.58%, respectively. The stability and settleability of sewage sludge were both improved significantly. Besides, the results indicated that bioleaching-Fenton oxidation was more efficient in dewatering the sewage sludge than traditional Fenton oxidation. The sludge conditioningmechanisms by bioleaching-Fenton oxidationmight mainly include the flocculation effects and the releases of extracellular polymeric substances-bound water and intercellular water.  相似文献   
879.
MnxCe1- xO2(x: 0.3–0.9) prepared by Pechini method was used as a catalyst for the thermal catalytic oxidation of formaldehyde(HCHO). At x = 0.3 and 0.5, most of the manganese was incorporated in the fluorite structure of Ce O2 to form a solid solution. The catalytic activity was best at x = 0.5, at which the temperature of 100% removal rate is the lowest(270°C). The temperature for 100% removal of HCHO oxidation is reduced by approximately 40°C by loading 5 wt.% Cu Oxinto Mn0.5Ce0.5O2. With ozone catalytic oxidation, HCHO(61 ppm) in gas stream was completely oxidized by adding 506 ppm O3 over Mn0.5Ce0.5O2 catalyst with a GHSV(gas hourly space velocity) of 10,000 hr-1at 25°C. The effect of the molar ratio of O3 to HCHO was also investigated. As O3/HCHO ratio was increased from 3 to 8, the removal efficiency of HCHO was increased from 83.3% to 100%. With O3/HCHO ratio of 8, the mineralization efficiency of HCHO to CO2 was 86.1%. At 25°C, the p-type oxide semiconductor(Mn0.5Ce0.5O2) exhibited an excellent ozone decomposition efficiency of 99.2%,which significantly exceeded that of n-type oxide semiconductors such as Ti O2, which had a low ozone decomposition efficiency(9.81%). At a GHSV of 10,000 hr-1, [O3]/[HCHO] = 3 and temperature of 25°C, a high HCHO removal efficiency(≥ 81.2%) was maintained throughout the durability test of 80 hr, indicating the long-term stability of the catalyst for HCHO removal.  相似文献   
880.
Ozonation of oxalate in aqueous phase was performed with a commercial activated carbon(AC)in this work. The effect of AC dosage and solution pH on the contribution of hydroxyl radicals(HOU) in bulk solution and oxidation on the AC surface to the removal of oxalate was studied. We found that the removal of oxalate was reduced by tert-butyl alcohol(tBA) with low dosages of AC,while it was hardly affected by tBA when the AC dosage was greater than 0.3 g/L. tBA also inhibited ozone decomposition when the AC dosage was no more than 0.05 g/L, but it did not work when the AC dosage was no less than 0.1 g/L. These observations indicate that HOUin bulk solution and oxidation on the AC surface both contribute to the removal of oxalate. HOU oxidation in bulk solution is significant when the dosage of AC is low, whereas surface oxidation is dominant when the dosage of AC is high. The oxalate removal decreased with increasing pH of the solution with an AC dosage of 0.5 g/L. The degradation of oxalate occurs mainly through surface oxidation in acid and neutral solution, but through HOUoxidation in basic bulk solution. A mechanism involving both HOUoxidation in bulk solution and surface oxidation was proposed for AC enhanced ozonation of oxalate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号