首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   888篇
  免费   71篇
  国内免费   380篇
安全科学   31篇
废物处理   14篇
环保管理   115篇
综合类   675篇
基础理论   313篇
污染及防治   92篇
评价与监测   26篇
社会与环境   52篇
灾害及防治   21篇
  2024年   6篇
  2023年   17篇
  2022年   29篇
  2021年   37篇
  2020年   36篇
  2019年   29篇
  2018年   40篇
  2017年   35篇
  2016年   54篇
  2015年   46篇
  2014年   71篇
  2013年   121篇
  2012年   85篇
  2011年   101篇
  2010年   61篇
  2009年   55篇
  2008年   56篇
  2007年   79篇
  2006年   76篇
  2005年   50篇
  2004年   28篇
  2003年   46篇
  2002年   26篇
  2001年   27篇
  2000年   16篇
  1999年   19篇
  1998年   18篇
  1997年   10篇
  1996年   12篇
  1995年   8篇
  1994年   12篇
  1993年   1篇
  1992年   4篇
  1991年   3篇
  1990年   6篇
  1989年   4篇
  1988年   3篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1975年   1篇
  1974年   1篇
排序方式: 共有1339条查询结果,搜索用时 15 毫秒
111.
为探究浒苔生物炭与木醋液复配改良碱化土壤效果及提高作物产量,以龟裂碱土为例,通过田间试验研究不同生物炭施加量(0、1%、2%和4%)与不同木醋液稀释倍数(0、2%)复配对土壤pH、碱化度、全盐、容重、速效磷、有机质、盐分离子、油葵生长和产量的影响,不施加生物炭和木醋液视为对照(CK).结果表明,2%浒苔生物炭+2%木醋液(V2BC2)改良龟裂碱土的综合效果最佳;在最佳处理条件下:①浒苔生物炭与木醋液复配能改善土壤理化性质,具体表现为作物生长期内土壤平均pH、碱化度和全盐含量显著降低,较CK分别降低12.14%、40.63%和42.75%,土壤容重显著减小,较CK减小20.78%;②浒苔生物炭与木醋液复配能显著降低土壤Na+、Cl-和SO42-含量,较CK分别降低47.17%、45.32%和33.33%,提高土壤K+和Ca2+含量,其他离子含量的差异不显著;③浒苔生物炭与木醋液复配显著提高土壤养分含量及有效性,增强土壤酶活性,与CK相比,速效磷提高2.88倍,有机质提高58.76%,土壤脲酶、碱性磷酸酶和蔗糖酶活性分别提高0.92、1.02和2.29倍;④油葵产量在V2BC2处理时最高,为3 546.7 kg-hm-2,较CK增产2 325.3 kg-hm-2.因此,浒苔生物炭与木醋液复配能进一步提高盐碱土改良效果及作物产量.  相似文献   
112.
在内蒙古贝加尔针茅草原,分别设对照(N0)、1.5 g·m^-2(N15)、3.0 g·m^-2(N30)、5.0 g·m^-2(N50)、10.0 g·m^-2(N100)、15.0 g·m^-2(N150)、20.0 g·m^-2(N200)和30 g·m^-2(N300)(不包括大气沉降的氮量)8个氮素(NH4NO3)梯度和模拟夏季增加降水100 mm的水分添加交互试验,研究氮素和水分添加对草原土壤养分、酶活性及微生物量碳氮的影响。结果表明:氮素和水分添加对草原土壤理化性质和生物学特性有显著影响。随施氮量的增加土壤总有机碳、全氮、硝态氮、铵态氮含量呈增加的趋势,相反,土壤pH值呈降低的趋势。土壤脲酶和过氧化氢酶的活性随施氮量的增加而升高,多酚氧化酶则随施氮量的增加呈下降的趋势。氮素和水分添加对草原土壤微生物量碳氮含量有显著影响,高氮处理(N150、N200和N300)显著降低了微生物碳含量,微生物氮含量随施氮量的增加呈上升趋势。水分添加能够减缓氮素添加对微生物的抑制作用,提高微生物量碳、微生物量氮含量。草原土壤养分、土壤酶活性及土壤微生物量碳氮含量间关系密切,过氧化氢酶与全氮、总有机碳、硝态氮呈显著正相关,多酚氧化酶与铵态氮、硝态氮、全氮呈显著负相关。微生物量氮含量与土壤全氮、铵态氮、硝态氮含量以及过氧化氢酶和磷酸酶活性呈显著正相关,与多酚氧化酶呈负相关;微生物量碳与过氧化氢酶呈负相关,与多酚氧化酶活性呈正相关。  相似文献   
113.
生物质能(Biomass energy)是最为广泛的可再生能源,其中多年生芒属C4植物(Miscanthus)由于具有巨大碳固定能力而成为潜力巨大的生物质能植物。中国是芒属植物芒草起源中心,但相对于欧洲国家应对能源危机和温室效应而采取的芒草研究与应用来说,仍处于起步阶段。我国长期以来传统的草地利用模式,决定了在南方草地的研究显著少于北方,近年来芒草在华南地区的运用研究集中于生态修复,对草本植物群落基于生态系统水平的 CO2气体交换能力的研究仍然相当缺乏,在二氧化碳浓度持续增长及全球变暖背景下,生物质能植物及其碳汇功能的相关研究尤显重要。我国南方近6700万hm2退化丘陵草坡急待恢复或处于恢复中,草坡地芒属植物符合生物质能植物标准,施肥少,害虫少,农药输入少,能够有效地利用光、水等自然资源。考虑到C4植物具有比C3植物更强的光合作用能力,高光能利用率C4芒属植物的碳固定能力及能源潜力值得重视,但缺乏科学的碳动态和碳收支评估。综述了国内外芒草生物量特征与生物质能潜力研究现状,重点论述芒属植物生态系统水平的碳动态和收支能力研究,探讨了系统水平更客观评估芒属碳源汇(Carbon sequestration)功能的方法,基于生物量过程的研究结果及华南地区草坡研究历史和现状,为草坡地生物质能的合理开发利用提出了相关对策,强调在我国南方开发和利用芒属植物资源具有重要能源价值和经济、环境效益。  相似文献   
114.
The adsorption of some heavy metals onto the walls of harvested, washed, and dried non-living biomass cells of different Pseudomonas strains was studied at optimum experimental conditions using a simplified single component system. The Langmuir adsorption model was found to be a suitable approach to describe the system via multi-step processes. Isotherms measured at 30.0°C and pH 5.5 with [M]total = 10-100 mM for tight, reversible Cr6+(aq), Ni2+(aq), Cu2+(aq) and Cd2+(aq) binding by the cell walls of the investigated biomass fit the Langmuir model and give the pH-independent stoichiometric site capacities νi and equilibrium constants Ki for metal binding at specific biomass sites i = A, B, C, and D. Tight binding sites A, B, and D of the non-living biomass are occupied by CrVI, sites A and C by NiII, sites A and D by CdII, and only site B by CuII. It is concluded that νi is a stoichiometric parameter that is independent of the magnitude of Ki for binding site i and that the studied heavy metals selectively and tightly bind at different biomass sites.  相似文献   
115.
Most of the standardized biodegradation tests used to assess the ultimate biodegradation of environmentally degradable polymers are based solely on the determination of net evolved carbon dioxide. However, under aerobic conditions, it has to be considered that heterotrophic microbial consortia metabolize carbon substrates both to carbon dioxide and in the production of new cell biomass. It is generally accepted that in the relatively short term, 50% of the carbon content of most organic substrates is converted to CO2, with the remaining carbon being assimilated as biomass or incorporated into humus. The latter is particularly important when the metabolism of the organic matter occurs in a soil environment. A straightforward relationship between the free-energy content of a carbon substrate (expressed as the standard free-energy of combustion) and its propensity for conversion to new microbial biomass rather than mineralization to CO2 has been established. This can potentially lead to underestimation of biodegradation levels of test compounds, especially when they consist of carbon in a fairly low formal oxidation state and relatively high free-energy content. In the present work, the metabolism of different kind of carbon substrates, especially in soil, is reviewed and compared with our own experimental results from respirometric tests. The results show that conversion of highly oxidized materials, such as the commonly used reference materials, cellulose or starch, to CO2 may be significantly overestimated. The addition of glucosidic material to soil leads to greatly increased respiration and is accompanied by a very low conversion to biomass or humic substances. In contrast, relatively less oxidized substrates metabolize more slowly to give both CO2 and biomass to an extent which may be significantly underestimated if glucosidic materials are used as the reference. The need for an overall carbon balance taking into account both the carbon immobilized as biomass and that volatized as CO2 must be considered in standard respirometric procedures for assessing the biodegradability of slowly degrading macromolecules.  相似文献   
116.
In Sub-Saharan Africa, conservation of available soil N during early crop growth, when N loss by leaching generally occurs, is important to improve crop productivity. In a dry tropical cropland in Tanzania, we assessed the potential role of soil microbes as a temporal N sink-source to conserve the available soil N until later crop growth, which generally requires substantial crop N uptake. We evaluated the effect of land management [i.e., no input, plant residue application before planting (P plot) with or without fertilizer application, fertilizer application alone, and non-cultivated plots] on the relationship between soil N pool [microbial biomass N (MBN) and inorganic N] and crop N uptake throughout the ∼120-d crop growth period in two consecutive years. In the P plot, MBN clearly increased (∼14.6-29.6 kg N ha−1) early in the crop growth period in both years because of immobilization of potentially leachable N, and it conserved a larger soil N pool (∼10.5-21.2 kg N ha−1) than in the control plot. Especially in one year in which N leaching was critical, increased MBN maintained a larger soil N pool in the P plot throughout the experimental period, and a delay of increased MB C:N ratio and a substantial decrease in MBN was observed, indicating better soil microbial N supply for crop N uptake during later crop growth. Therefore, plant residue application before planting should enhance the role of soil microbes as a temporal N sink-source, leading to the conservation of potentially leachable N until later phase of crop growth, especially in years in which N leaching is relatively severe. Although further studies are necessary, our results suggest that plant residue application before planting is a promising option to achieve better N synchronization.  相似文献   
117.
Red soil may play an important role in nitrous oxide (N2O) emissions due to its recent land use change pattern. To predict the land use change effect on N2O emissions, we examined the relationship between soil N2O flux and environmental determinants in four different types of land uses in subtropical red soil. During two years of study (January 2005-January 2007), biweekly N2O fluxes were measured from 09:00 to 11:00 a.m. using static closed chamber method. Objectives were to estimate the seasonal and annual N2O flux differences from land use change and, reveal the controlling factors of soil N2O emission by studying the relationship of dissolved organic carbon (DOC), microbial biomass carbon (MBC), water filled pore space (WFPS) and soil temperature with soil N2O flux. Nitrous oxide fluxes were significantly higher in hot-humid season than in the cool-dry season. Significant differences in soil N2O fluxes were observed among four land uses; 2.9, 1.9 and 1.7 times increased N2O emissions were observed after conventional land use conversion from woodland to paddy, orchard and upland, respectively. The mean annual budgets of N2O emission were 0.71-2.21 kg N2O-N ha−1 year−1 from four land use types. The differences were partly attributed to increased fertilizer use in agriculture land uses. In all land uses, N2O fluxes were positively related to soil temperature and DOC accounting for 22-48% and 30-46% of the seasonal N2O flux variability, respectively. Nitrous oxide fluxes did significantly correlate with WFPS in orchard and upland only. Nitrous oxide fluxes responded positively to MBC in all land use types except orchard which had the lowest WFPS. We conclude that (1) land use conversion from woodland to agriculture land uses leads to increased soil N2O fluxes, partly due increased fertilizer use, and (2) irrespective of land use, soil N2O fluxes are under environmental controls, the main variables being soil temperature and DOC, both of which control the supply of nitrification and denitrification substrates.  相似文献   
118.
A novel silica catalyst was synthesized by evaporation-induced self-assembly (EISA) method and tested for the catalytic selective hydrolysis of cellulose to glucose. This silica catalyst exhibited a higher catalytic activity than other oxides prepared by the same method, such as ZrO2, TiO2, and Al2O3. Using silica as a catalyst, cellulose was selectively hydrolyzed into glucose with a glucose yield as high as 50% under hydrothermal conditions without hydrogen gas. The silica catalyst was characterized by Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results of temperature-programmed desorption of ammonia (NH3-TPD) and textural properties indicated that the synergistic effect between strong acidity and a suitable pore diameter of the silica catalyst may be responsible for its high activity. In addition, the catalyst was recyclable and showed excellent stability during the recycle catalytic runs.  相似文献   
119.
To investigate the impact on urban air pollution by crop residual burning outside Nanjing, aerosol concentration, pollution gas concentration, mass concentration, and water-soluble ion size distribution were observed during one event of November 4-9, 2010. Results show that the size distribution of aerosol concentration is bimodal on pollution days and normal days, with peak values at 60-70 and 200-300 nm, respectively. Aerosol concentration is 104 cm-3. nm-1 on pollution days. The peak value of spectrum distribution of aerosol concentration on pollution days is 1.5-3.3 times higher than that on a normal day. Crop residual burning has a great impact on the concentration of fine particles. Diurnal variation of aerosol concentration is trimodal on pollution days and normal days, with peak values at 03:00, 09:00 and 19:00 local standard time. The first peak is impacted by meteorological elements, while the second and third peaks are due to human activities, such as rush hour traffic. Crop residual burning has the greatest impact on SO2 concentration, followed by NO2, O3 is hardly affected. The impact of crop residual burning on fine particles (< 2.1 μm) is larger than on coarse particles (> 2.1 μm), thus ion concentration in fine particles is higher than that in coarse particles. Crop residual burning leads to similar increase in all ion components, thus it has a small impact on the water-soluble ions order. Crop residual burning has a strong impact on the size distribution of K+, Cl-, Na+, and F- and has a weak impact on the size distributions of NH4+, Ca2+, NO3- and SO42-.  相似文献   
120.
Changes of protists, which were categorized into different functional groups primarily according to their feeding habits, in two full-scale municipal wastewater treatment systems experiencing sludge bulking were investigated over a period of 14 months. Protist biomass represented 3.7% to 5.2% of total biomass on average under normal sludge conditions, and the percentage increased significantly (p < 0.05) under sludge bulking conditions. The biomass of Chilodonella spp., capable of eating filamentous bacteria, tended to decrease in both systems when sludge bulking occurred, showing that the abnormal growth of filamentous bacteria did not lead to a biomass bloom of this group of protists. On the other hand, the bactivorous protists represented more than 96% of total protist biomass, and the biomass of this group, particularly the attached ciliates, increased significantly (p < 0.05) when sludge bulking occurred. The significant increase of the attached ciliates may have possibly facilitated the growth of filamentous bacteria through selectively preying on non-filamentous bacteria and further exacerbated sludge bulking. The redundancy analysis and correlation analysis results showed that the biomass changes of the attached ciliates were primarily related to the sludge volume index and to some extent related to five-day biochemical oxygen demand loading and hydraulic retention time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号