首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2567篇
  免费   574篇
  国内免费   593篇
安全科学   114篇
废物处理   31篇
环保管理   98篇
综合类   1016篇
基础理论   2107篇
污染及防治   250篇
评价与监测   65篇
社会与环境   31篇
灾害及防治   22篇
  2024年   4篇
  2023年   113篇
  2022年   154篇
  2021年   180篇
  2020年   169篇
  2019年   167篇
  2018年   175篇
  2017年   177篇
  2016年   182篇
  2015年   209篇
  2014年   214篇
  2013年   258篇
  2012年   214篇
  2011年   241篇
  2010年   192篇
  2009年   134篇
  2008年   133篇
  2007年   97篇
  2006年   104篇
  2005年   75篇
  2004年   81篇
  2003年   68篇
  2002年   56篇
  2001年   53篇
  2000年   30篇
  1999年   32篇
  1998年   27篇
  1997年   25篇
  1996年   26篇
  1995年   27篇
  1994年   22篇
  1993年   16篇
  1992年   21篇
  1991年   5篇
  1990年   8篇
  1989年   9篇
  1988年   7篇
  1987年   4篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   4篇
  1982年   4篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1975年   2篇
  1974年   1篇
  1971年   1篇
排序方式: 共有3734条查询结果,搜索用时 15 毫秒
491.
Tropical forest ecosystems are threatened by habitat conversion and other anthropogenic actions. Timber production forests can augment the conservation value of primary forest reserves, but studies of logging effects often yield contradictory findings and thus inhibit efforts to develop clear conservation strategies. We hypothesized that much of this variability reflects a common methodological flaw, simple pseudoreplication, that confounds logging effects with preexisting spatial variation. We reviewed recent studies of the effects of logging on biodiversity in tropical forests (n = 77) and found that 68% were definitively pseudoreplicated while only 7% were definitively free of pseudoreplication. The remaining proportion could not be clearly categorized. In addition, we collected compositional data on 7 taxa in 24 primary forest research plots and systematically analyzed subsets of these plots to calculate the probability that a pseudoreplicated comparison would incorrectly identify a treatment effect. Rates of false inference (i.e., the spurious detection of a treatment effect) were >0.5 for 2 taxa, 0.3–0.5 for 2 taxa, and <0.3 for 3 taxa. Our findings demonstrate that tropical conservation strategies are being informed by a body of literature that is rife with unwarranted inferences. Addressing pseudoreplication is essential for accurately assessing biodiversity in logged forests, identifying the relative merits of specific management practices and landscape configurations, and effectively balancing conservation with timber production in tropical forests. Pseudoreplicación en Bosques Tropicales y Efectos Resultantes Sobre la Conservación de Biodiversidad  相似文献   
492.
Apparent competition is an indirect interaction between 2 or more prey species through a shared predator, and it is increasingly recognized as a mechanism of the decline and extinction of many species. Through case studies, we evaluated the effectiveness of 4 management strategies for species affected by apparent competition: predator control, reduction in the abundances of alternate prey, simultaneous control of predators and alternate prey, and no active management of predators or alternate prey. Solely reducing predator abundances rapidly increased abundances of alternate and rare prey, but observed increases are likely short‐lived due to fast increases in predator abundance following the cessation of control efforts. Substantial reductions of an abundant alternate prey resulted in increased predation on endangered huemul (Hippocamelus bisulcus) deer in Chilean Patagonia, which highlights potential risks associated with solely reducing alternate prey species. Simultaneous removal of predators and alternate prey increased survival of island foxes (Urocyon littoralis) in California (U.S.A.) above a threshold required for population recovery. In the absence of active management, populations of rare woodland caribou (Rangifer tarandus caribou) continued to decline in British Columbia, Canada. On the basis of the cases we examined, we suggest the simultaneous control of predators and alternate prey is the management strategy most likely to increase abundances and probabilities of persistence of rare prey over the long term. Knowing the mechanisms driving changes in species’ abundances before implementing any management intervention is critical. We suggest scientists can best contribute to the conservation of species affected by apparent competition by clearly communicating the biological and demographic forces at play to policy makers responsible for the implementation of proposed management actions. Estrategias de Conservación para Especies Afectadas por Competencia Aparente  相似文献   
493.
Marine spatial planning provides a comprehensive framework for managing multiple uses of the marine environment and has the potential to minimize environmental impacts and reduce conflicts among users. Spatially explicit assessments of the risks to key marine species from human activities are a requirement of marine spatial planning. We assessed the risk of ships striking humpback (Megaptera novaeangliae), blue (Balaenoptera musculus), and fin (Balaenoptera physalus) whales in alternative shipping routes derived from patterns of shipping traffic off Southern California (U.S.A.). Specifically, we developed whale‐habitat models and assumed ship‐strike risk for the alternative shipping routes was proportional to the number of whales predicted by the models to occur within each route. This definition of risk assumes all ships travel within a single route. We also calculated risk assuming ships travel via multiple routes. We estimated the potential for conflict between shipping and other uses (military training and fishing) due to overlap with the routes. We also estimated the overlap between shipping routes and protected areas. The route with the lowest risk for humpback whales had the highest risk for fin whales and vice versa. Risk to both species may be ameliorated by creating a new route south of the northern Channel Islands and spreading traffic between this new route and the existing route in the Santa Barbara Channel. Creating a longer route may reduce the overlap between shipping and other uses by concentrating shipping traffic. Blue whales are distributed more evenly across our study area than humpback and fin whales; thus, risk could not be ameliorated by concentrating shipping traffic in any of the routes we considered. Reducing ship‐strike risk for blue whales may be necessary because our estimate of the potential number of strikes suggests that they are likely to exceed allowable levels of anthropogenic impacts established under U.S. laws. Evaluación del Riesgo de Colisiones de Barcos y Ballenas en la Planificación Marina Espacial  相似文献   
494.
495.
Mutualistic networks are critical to biological diversity maintenance; however, their structures and functionality may be threatened by a swiftly changing world. In the Amazon, the increasing number of dams poses a large threat to biological diversity because they greatly alter and fragment the surrounding landscape. Tight coevolutionary interactions typical of tropical forests, such as the ant–myrmecophyte mutualism, where the myrmecophyte plants provide domatia nesting space to their symbiotic ants, may be jeopardized by the landscape changes caused by dams. We analyzed 31 ant–myrmecophyte mutualistic networks in undisturbed and disturbed sites surrounding Balbina, the largest Central Amazonian dam. We tested how ant–myrmecophyte networks differ among dam‐induced islands, lake edges, and undisturbed forests in terms of species richness, composition, structure, and robustness (number of species remaining in the network after partner extinctions). We also tested how landscape configuration in terms of area, isolation, shape, and neighborhood alters the structure of the ant–myrmecophyte networks on islands. Ant–myrmecophytic networks were highly compartmentalized in undisturbed forests, and the compartments had few strongly connected mutualistic partners. In contrast, networks at lake edges and on islands were not compartmentalized and were negatively affected by island area and isolation in terms of species richness, density, and composition. Habitat loss and fragmentation led to coextinction cascades that contributed to the elimination of entire ant–plant compartments. Furthermore, many myrmecophytic plants in disturbed sites lost their mutualistic ant partners or were colonized by opportunistic, nonspecialized ants. Robustness of ant–myrmecophyte networks on islands was lower than robustness near lake edges and in undisturbed forest and was particularly susceptible to the extinction of plants. Beyond the immediate habitat loss caused by the building of large dams in Amazonia, persistent edge effects and habitat fragmentation associated with dams had large negative effects on animal–plant mutualistic networks. Efectos de la Fragmentación del Paisaje Inducida por Presas sobre Redes Mutualistas Hormiga‐Planta Amazónicas  相似文献   
496.
Urban ecology is emerging as an integrative science that explores the interactions of people and biodiversity in cities. Interdisciplinary research requires the creation of new tools that allow the investigation of relations between people and biodiversity. It has been established that access to green spaces or nature benefits city dwellers, but the role of species diversity in providing psychological benefits remains poorly studied. We developed a user‐friendly 3‐dimensional computer program (Virtual Garden [ www.tinyurl.com/3DVirtualGarden ]) that allows people to design their own public or private green spaces with 95 biotic and abiotic features. Virtual Garden allows researchers to explore what elements of biodiversity people would like to have in their nearby green spaces while accounting for other functions that people value in urban green spaces. In 2011, 732 participants used our Virtual Garden program to design their ideal small public garden. On average gardens contained 5 different animals, 8 flowers, and 5 woody plant species. Although the mathematical distribution of flower and woody plant richness (i.e., number of species per garden) appeared to be similar to what would be expected by random selection of features, 30% of participants did not place any animal species in their gardens. Among those who placed animals in their gardens, 94% selected colorful species (e.g., ladybug [Coccinella septempunctata], Great Tit [Parus major], and goldfish), 53% selected herptiles or large mammals, and 67% selected non‐native species. Older participants with a higher level of education and participants with a greater concern for nature designed gardens with relatively higher species richness and more native species. If cities are to be planned for the mutual benefit of people and biodiversity and to provide people meaningful experiences with urban nature, it is important to investigate people's relations with biodiversity further. Virtual Garden offers a standardized tool with which to explore these relations in different environments, cultures, and countries. It can also be used by stakeholders (e.g., city planners) to consider people's opinions of local design. Programa de Computadora de Jardín Virtual para Uso en la Exploración de los Elementos de Biodiversidad que la Gente Desea en las Ciudades  相似文献   
497.
Although the concept of connectivity is decades old, it remains poorly understood and defined, and some argue that habitat quality and area should take precedence in conservation planning instead. However, fragmented landscapes are often characterized by linear features that are inherently connected, such as streams and hedgerows. For these, both representation and connectivity targets may be met with little effect on the cost, area, or quality of the reserve network. We assessed how connectivity approaches affect planning outcomes for linear habitat networks by using the stock‐route network of Australia as a case study. With the objective of representing vegetation communities across the network at a minimal cost, we ran scenarios with a range of representation targets (10%, 30%, 50%, and 70%) and used 3 approaches to account for connectivity (boundary length modifier, Euclidean distance, and landscape‐value [LV]). We found that decisions regarding the target and connectivity approach used affected the spatial allocation of reserve systems. At targets ≥50%, networks designed with the Euclidean distance and LV approaches consisted of a greater number of small reserves. Hence, by maximizing both representation and connectivity, these networks compromised on larger contiguous areas. However, targets this high are rarely used in real‐world conservation planning. Approaches for incorporating connectivity into the planning of linear reserve networks that account for both the spatial arrangement of reserves and the characteristics of the intervening matrix highlight important sections that link the landscape and that may otherwise be overlooked. El Efecto de la Planeación para la Conectividad en Redes de Reservas Lineales  相似文献   
498.
Monitoring free‐ranging animals in their natural habitat is a keystone of ecosystem conservation and increasingly important in the context of current rates of loss of biological diversity. Data collected from individuals of endangered species inform conservation policies. Conservation professionals assume that these data are reliable—that the animals from whom data are collected are representative of the species in their physiology, ecology, and behavior and of the populations from which they are drawn. In the last few decades, there has been an enthusiastic adoption of invasive techniques for gathering ecological and conservation data. Although these can provide impressive quantities of data, and apparent insights into animal ranges and distributions, there is increasing evidence that these techniques can result in animal welfare problems, through the wide‐ranging physiological effects of acute and chronic stress and through direct or indirect injuries or compromised movement. Much less commonly, however, do conservation scientists consider the issue of how these effects may alter the behavior of individuals to the extent that the data they collect could be unreliable. The emerging literature on the immediate and longer‐term effects of capture and handling indicate it can no longer be assumed that a wild animal's survival of the process implies the safety of the procedure, that the procedure is ethical, or the scientific validity of the resulting data. I argue that conservation professionals should routinely assess study populations for negative effects of their monitoring techniques and adopt noninvasive approaches for best outcomes not only for the animals, but also for conservation science. Efecto de la Técnica de Monitoreo en la Calidad de la Ciencia de la Conservación  相似文献   
499.
Permeability of Roads to Movement of Scrubland Lizards and Small Mammals   总被引:2,自引:0,他引:2  
A primary objective of road ecology is to understand and predict how roads affect connectivity of wildlife populations. Road avoidance behavior can fragment populations, whereas lack of road avoidance can result in high mortality due to wildlife‐vehicle collisions. Many small animal species focus their activities to particular microhabitats within their larger habitat. We sought to assess how different types of roads affect the movement of small vertebrates and to explore whether responses to roads may be predictable on the basis of animal life history or microhabitat preferences preferences. We tracked the movements of fluorescently marked animals at 24 sites distributed among 3 road types: low‐use dirt, low‐use secondary paved, and rural 2‐lane highway. Most data we collected were on the San Diego pocket mouse (Chaetodipus fallax), cactus mouse (Peromyscus eremicus), western fence lizard (Sceloporus occidentalis), orange‐throated whiptail (Aspidoscelis hyperythra), Dulzura kangaroo rat (Dipodomys simulans) (dirt, secondary paved), and deer mouse (Peromyscus maniculatus) (highway only). San Diego pocket mice and cactus mice moved onto dirt roads but not onto a low‐use paved road of similar width or onto the highway, indicating they avoid paved road substrate. Both lizard species moved onto the dirt and secondary paved roads but avoided the rural 2‐lane rural highway, indicating they may avoid noise, vibration, or visual disturbance from a steady flow of traffic. Kangaroo rats did not avoid the dirt or secondary paved roads. Overall, dirt and secondary roads were more permeable to species that prefer to forage or bask in open areas of their habitat, rather than under the cover of rocks or shrubs. However, all study species avoided the rural 2‐lane highway. Our results suggest that microhabitat use preferences and road substrate help predict species responses to low‐use roads, but roads with heavy traffic may deter movement of a much wider range of small animal species.  相似文献   
500.
Land‐use dynamics and climatic gradients have large effects on many terrestrial systems. Exurban development, one of the fastest growing forms of land use in the United States, may affect wildlife through habitat fragmentation and building presence may alter habitat quality. We studied the effects of residential development and temperature gradients on bird species occurrence at 140 study sites in the southern Appalachian Mountains (North Carolina, U.S.A.) that varied with respect to building density and elevation. We used occupancy models to determine 36 bird species’ associations with building density, forest canopy cover, average daily mean temperature, and an interaction between building density and mean temperature. Responses varied with habitat requirement, breeding range, and migration distance. Building density and mean temperature were both included in the top occupancy models for 19 of 36 species and a building density by temperature interaction was included in models for 8 bird species. As exurban development expands in the southern Appalachians, interior forest species and Neotropical migrants are likely to decline, but shrubland or edge species are not likely to benefit. Overall, effects of building density were greater than those of forest canopy cover. Exurban development had a greater effect on birds at high elevations due to a greater abundance of sensitive forest‐interior species and Neotropical migrants. A warming climate may exacerbate these negative effects. Efectos del Desarrollo Exurbano y de la Temperatura sobre Especies de Aves en las Apalaches del Sur  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号