首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1003篇
  免费   106篇
  国内免费   230篇
安全科学   179篇
废物处理   13篇
环保管理   118篇
综合类   458篇
基础理论   336篇
环境理论   1篇
污染及防治   64篇
评价与监测   25篇
社会与环境   120篇
灾害及防治   25篇
  2024年   1篇
  2023年   23篇
  2022年   35篇
  2021年   46篇
  2020年   49篇
  2019年   43篇
  2018年   38篇
  2017年   42篇
  2016年   53篇
  2015年   54篇
  2014年   46篇
  2013年   71篇
  2012年   91篇
  2011年   108篇
  2010年   66篇
  2009年   73篇
  2008年   60篇
  2007年   72篇
  2006年   77篇
  2005年   41篇
  2004年   42篇
  2003年   31篇
  2002年   38篇
  2001年   24篇
  2000年   26篇
  1999年   20篇
  1998年   8篇
  1997年   9篇
  1996年   14篇
  1995年   12篇
  1994年   6篇
  1993年   5篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   2篇
  1981年   1篇
  1980年   1篇
  1976年   1篇
排序方式: 共有1339条查询结果,搜索用时 190 毫秒
871.
Using system dynamics to model water-reallocation   总被引:2,自引:0,他引:2  
Improving the efficiency of water allocation has long been recognised as a key problem for the water resources management decision-makers. However, assessing the efficacy of management decision is difficult due to the complexity and interconnectivity of water resource systems. For this reason, it is vital that robust modelling approaches are employed to deal with the feedback loops inherent in the water resource systems. Whilst many studies have applied modelling to various aspects of water resource management, little attention has been given to innovations in modelling approaches to deal with the modelling challenges associated with improving decision-making. The aim of this study is to apply a System Dynamics modelling approach to improve the efficiency of water allocation incorporating a myriad of irrigation system constraints. The system dynamic approach allows the different system components to be organised as a collection of discrete objects that incorporate data, structure and function to generate complex system behaviour. Through the application of a system dynamic approach, a robust model (named the Economical Reallocating Water Model (ERWM)) was developed which was used to examine the options of re-allocating water resources that minimize the water cost all over an irrigated agricultural area. The EWRM incorporated a wide range of complexities likely to be encountered in water resource management: surface and ground water sources, water trading between sources, system constraint such as maximum ground water pumping, rates, maximum possible trading volumes and differential water resource prices. Two hypothetical systems have been presented here as an example. The results show that the System Dynamics approach has a significant advantages in estimating and assessing the outcomes of alternative water management strategies through time and space.  相似文献   
872.
系统动力学是一种以反馈控制理论为基础、计算机仿真技术为手段,研究复杂社会经济大系统的方法。随着可持续发展战略的提出,该方法得到了广泛应用。综述了近年来系统动力学方法在我国可持续发展战略中的研究进展,着重介绍了该方法在区域资源生态承载力方面的研究,提出了系统动力学研究的方向。  相似文献   
873.
a production in the central, south central, and the south segments of the lagoon. In a system as large and complex as the lagoon, N and P limitations are potentially subject to significant spatial and temporal variability. Total Kjeldahl nitrogen (TN) was higher in the north (1.25 mg/liter) and lower in the south (0.89 mg/liter). The reverse pattern was observed for total P (TP), i.e., lowest in the north (0.03 mg/liter) and highest at the south (0.14 mg/liter) ends of the IRL. This increased P concentration in the SIRL appears to have a significantly large effect on chlorophyll a production compared with the other segments, as indicated by stepwise regression statistics. This relationship can be expressed as follows: South IRL [chlorophyll a] =−8.52 + 162.41 [orthophosphate] + 7.86 [total nitrogen] + 0.38 [turbidity]; R 2= 0.98**.  相似文献   
874.
We investigated differences in vegetation composition and dynamics for two globally rare ecosystems, bracken–grasslands and northern–dry forests of northern Wisconsin. These ecosystems commonly have been viewed as degraded pine barrens. Bracken–grasslands contained a high dominance of exotic species, low native richness, and no obvious prairie species, suggesting logging-era anthropogenic origins. Differences in cover for common plants among ecosystems were examined using Mann-Whitney U tests of equivalence. Cover of all 8 graminoid species, 4 of 5 Ericaceae and Myricaceae species, and 10 of 17 species of forbs were significantly different between ecosystems. Vegetation changes over a 4-year period were examined through detrended correspondence analysis (DCA) and analysis of variance (ANOVA) repeated measures. DCA analyses of community composition failed to detect significant temporal trends within individual management units, although differences were apparent between ecosystems, regardless of sample year. In addition, no apparent patterns could be detected between years when comparing dominant individual species to management history (prescribed fire). This is contrary to what would be expected for a degraded pine barrens and questions the efficacy of using repeated prescribed fire as a management tool in bracken–grasslands. Methods for conservation and restoration of xeric ecosystems of northern Wisconsin have historically relied heavily on single species (e.g., sharp-tailed grouse) wildlife models, without full consideration of other factors. We suggest that stakeholders involved in these restoration projects examine historic processes and reference conditions prior to formulating management goals. Greater attention to the differentiation and individual management needs of pine barrens, northern–dry forests, and bracken–grasslands is needed.  相似文献   
875.
Noncrop areas such as hedgerows in agricultural landscapes can perform several ecological and agronomic functions (e.g., habitat, movement corridors, windbreak, etc.), but their dynamics and drivers of changes are often poorly known. We conducted a study in three agricultural landscapes of southern Quebec, Canada, to assess and compare the spatial and temporal (1958–1997) dynamics of three hedgerow networks in relation to geomorphic conditions (marine, glacial, and mixed deposit) and land-use changes. Hedgerow networks were mapped and described in terms of their structure (density, degree of connectivity, and presence of trees or shrubs) and their relationship to other components of the landscape (connection to woodland). Relationships were assessed in time and space using nonparametric correlation, Mantel test, and principal components analysis (PCA). Results show significant differences between hedgerow structure for the three landscapes and distinct temporal and spatial dynamics that can be related to changes in management practices and agricultural policies. On marine deposits, increases in hedgerow density did not always correspond to an increase in their degree of connectivity, suggesting a possible reduction in network quality. On glacial deposits, hedgerow density declined following abandonment of agricultural land, but rather than disappearing, these linear structures were integrated into adjacent brush or forested areas. Our analysis reveals the complex spatial and temporal dynamics of the hedgerow networks and highlights the need to take into account spatial attributes such as connectivity and connection to woodland to evaluate more accurately overall network quality.  相似文献   
876.
Twelve morphological features from research on alluvial streams are compared in four narrow, low-gradient wetland streams located in different geographic regions (Connecticut, Indiana, and Wisconsin, USA). All four reaches differed in morphological characteristics in five of the features compared (consistent bend width, bend cross-sectional shape, riffle width compared to pool width, greatest width directly downstream of riffles, and thalweg location), while three reaches differed in two comparisons (mean radius of curvature to width ratio and axial wavelength to width ratio). The remaining five features compared had at least one reach where different characteristics existed. This indicates the possibility of varying morphology for streams traversing wetland areas further supporting the concept that the unique qualities of wetland environments might also influence the controls on fluvial dynamics and the development of streams. If certain morphological features found in streams traversing wetland areas differ from current fluvial principles, then these varying features should be incorporated into future wetland stream design and creation projects. The results warrant further research on other streams traversing wetlands to determine if streams in these environments contain unique morphology and further investigation of the impact of low-energy fluvial processes on morphological development. Possible explanations for the morphology deviations in the study streams and some suggestions for stream design in wetland areas based upon the results and field observations are also presented.  相似文献   
877.
The movement of individuals among populations can be critical in preventing local and landscape-scale species extinctions in systems exposed to human perturbation. Current understanding of spatial population dynamics in streams is largely limited to the reach scale and is therefore inadequate to address species response to spatially extensive perturbation. Using model simulations, I examined species response to perturbation in a drainage composed of multiple, hierarchically arranged stream-patches connected by in-stream and overland pathways of dispersal. Patch extinction probability, the proportion of initially occupied patches extinct after 25 years, was highly sensitive to the extent of species occupancy and perturbation within the drainage, longitudinal species distribution, perturbation decay rate and the covariance pattern of stochastic effects on colonization and extinction probabilities. Results of these simulations underscore the importance of identifying and preserving source populations and dispersal routes for stream species in human-impacted landscapes. They also highlight the vulnerability of headwater specialist taxa to anthropogenic perturbation, and the strong positive effect on species resilience of habitat rehabilitation when recolonization is possible. Efforts to conserve and manage stream species may be greatly improved by accounting for landscape-scale spatial population dynamics.  相似文献   
878.
Long-term dynamics of the numbers of complete (normal) veins, venation anomalies, and linear wing parameters were analyzed in male Calopteryx splendens Harr. damselflies from neighboring population groups. Correlation analysis showed that some anomalies may appear additionally to complete veins, whereas other anomalies are formed instead of them. The damselflies from the generations of even years proved to have significantly greater numbers of anomalies. A probable cause of this phenomenon was a sharp increase in the background radiation level in the summer of 1986, after the Chernobyl accident, which could lead to serious hereditary disturbances manifested in a series of generations. The results of the study show that the formation of wing venation anomalies in damselflies is a stochastic process, which is enhanced under the effect of both environmental and genetic stress. These anomalies may be regarded as markers characterizing the degree of stability of ontogenetic processes in the population, which essentially reflect specific genotypic traits of individual organisms. Analysis of wing venation anomalies appears to be a more precise instrument for assessing developmental stability than estimation of the levels of fluctuating asymmetry and general phenotypic variance.  相似文献   
879.
Highland (altitude 1600 m above sea level) and lowland (altitude −2 m below sea level) populations of the perennial herb Silene vulgaris (Moench) Garcke, were tested on their response to elevated levels of UV-B radiation. Highland populations typically receive high natural UV-B fluxes, whereas lowland populations receive a lower natural UV-B dose. Adaptation to high UV-B levels of the highland population is to be expected. Experimental comparison of growth rates, gas exchange rates, transpiration and biochemical parameters using adult plants as well as seedlings did not show a difference in the response to elevated UV-B levels between the two populations. Individuals of both populations were relatively insensitive to elevated UV-B radiation. The response of alpine and lowland populations of Silene vulgaris is discussed in relation to the dispersal of this species after the last ice age.  相似文献   
880.
The paper presents a generic computer model for estimating short-term steady-state fluxes of CO2, water vapor, and heat from broad leaves and needle-leaved coniferous shoots of C3 plant species. The model explicitly couples all major processes and feedbacks known to impact leaf biochemistry and biophysics including biochemical reactions, stomatal function, and leaf-boundary layer heat- and mass-transport mechanisms. The ability of the model to successfully predict measured photosynthesis and stomatal-conductance data as well as to simulate a variety of observed leaf responses is demonstrated. A model application investigating physiological and environmental regulation of leaf water-use efficiency (WUE) under steady-state conditions is discussed. Simulation results suggest that leaf physiology has a significant control over the environmental sensitivity of leaf WUE. The implementation of a highly efficient solution technique allows the model to be directly incorporated into plant-canopy and terrestrial ecosystem models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号