全文获取类型
收费全文 | 5456篇 |
免费 | 1666篇 |
国内免费 | 362篇 |
专业分类
安全科学 | 147篇 |
废物处理 | 61篇 |
环保管理 | 919篇 |
综合类 | 3626篇 |
基础理论 | 1425篇 |
环境理论 | 6篇 |
污染及防治 | 338篇 |
评价与监测 | 268篇 |
社会与环境 | 643篇 |
灾害及防治 | 51篇 |
出版年
2025年 | 22篇 |
2024年 | 209篇 |
2023年 | 237篇 |
2022年 | 298篇 |
2021年 | 298篇 |
2020年 | 269篇 |
2019年 | 217篇 |
2018年 | 189篇 |
2017年 | 297篇 |
2016年 | 302篇 |
2015年 | 287篇 |
2014年 | 313篇 |
2013年 | 346篇 |
2012年 | 419篇 |
2011年 | 411篇 |
2010年 | 351篇 |
2009年 | 314篇 |
2008年 | 239篇 |
2007年 | 350篇 |
2006年 | 352篇 |
2005年 | 287篇 |
2004年 | 290篇 |
2003年 | 220篇 |
2002年 | 180篇 |
2001年 | 146篇 |
2000年 | 142篇 |
1999年 | 108篇 |
1998年 | 64篇 |
1997年 | 69篇 |
1996年 | 50篇 |
1995年 | 42篇 |
1994年 | 52篇 |
1993年 | 37篇 |
1992年 | 30篇 |
1991年 | 14篇 |
1990年 | 9篇 |
1989年 | 3篇 |
1988年 | 6篇 |
1986年 | 4篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1982年 | 1篇 |
1981年 | 2篇 |
1979年 | 2篇 |
1978年 | 1篇 |
1977年 | 1篇 |
1971年 | 2篇 |
排序方式: 共有7484条查询结果,搜索用时 953 毫秒
81.
Structural modifications to landscapes affect the ability of organisms to access different habitat patches. There exist, however, very few general methods by which to relate modifications to expectations of effects, and even fewer that enable understanding of how multiple modifications may interact. In the absence of any guiding principles, ecologists have assumed that interactions will result in complex landscape-scale effects. One way of understanding such effects is through rendering a landscape as a graph or network, among the simplest of which are dendritic networks typified by stream systems. Yet even for stream networks, there are no known general principles concerning the nature of interactions between multiple modifications. We developed a model to describe the ability of fish to access and use different habitat patches within dendritic networks. We used mathematical and numerical analyses of the model to investigate how the habitat value of a network is affected by changes in connectivity and habitat quality, and then to examine interactions between multiple modifications. Rather than showing complex interactions, our analytic and simulation-based results show that the combined effect of multiple modifications approximately equals the sum of individually predicted effects. Dendritic networks thus appear to respond far more simply to multiple modifications than has previously been assumed. These results have implications for stream management planning, and offer a firm foundation from which to better understand population processes within dendritic networks. 相似文献
82.
Hong Li Mijail Arias Anouk Blauw Arthur E. Mynett Steef Peters 《Ecological modelling》2010,221(20):2435-2446
Physically based numerical modelling follows from the basic understanding of the underlying mechanisms and is often represented by a set of (partial differential) equations. It is one of the main approaches in population dynamics modelling. The emphasis of the model introduced in this paper is on the simulation of short-term spatial and temporal dynamics of harmful algal bloom (HAB) events. Total suspended matter (TSM) concentration is one of the dominant factors for harmful algal bloom (HAB) prediction in North Sea. However, the modelling of suspended matter contains a high degree of uncertainty in this area. Therefore, this research aims to achieve a better estimation for the short-term prediction of harmful algal bloom development in both space and time by using spatially distributed TSM retrieved from remotely sensed images as physically based model inputs. In order to supply complete spatially covered datasets for the physically based model instrument: generic ecological model (GEM), this research retrieves TSM information from MERIS images by means of proper estimation techniques including biharmonic splines and self-learning cellular automata. A better estimation of HAB spatial pattern development is achieved by adding spatially distributed TSM data as inputs to original GEM model, and it proved that chlorophyll-a concentration in this area is very sensitive to TSM concentration. 相似文献
83.
ANNE K. SALOMON SARAH K. GAICHAS NICK T. SHEARS JENNIFER E. SMITH ELIZABETH M. P. MADIN STEVEN D. GAINES 《Conservation biology》2010,24(2):382-394
Abstract: Trophic cascades triggered by fishing have profound implications for marine ecosystems and the socioeconomic systems that depend on them. With the number of reported cases quickly growing, key features and commonalities have emerged. Fishery‐induced trophic cascades often display differential response times and nonlinear trajectories among trophic levels and can be accompanied by shifts in alternative states. Furthermore, their magnitude appears to be context dependent, varying as a function of species diversity, regional oceanography, local physical disturbance, habitat complexity, and the nature of the fishery itself. To conserve and manage exploited marine ecosystems, there is a pressing need for an improved understanding of the conditions that promote or inhibit the cascading consequences of fishing. Future research should investigate how the trophic effects of fishing interact with other human disturbances, identify strongly interacting species and ecosystem features that confer resilience to exploitation, determine ranges of predator depletion that elicit trophic cascades, pinpoint antecedents that signal ecosystem state shifts, and quantify variation in trophic rates across oceanographic conditions. This information will advance predictive models designed to forecast the trophic effects of fishing and will allow managers to better anticipate and avoid fishery‐induced trophic cascades. 相似文献
84.
Bayesian Networks and Adaptive Management of Wildlife Habitat 总被引:1,自引:0,他引:1
Abstract: Adaptive management is an iterative process of gathering new knowledge regarding a system's behavior and monitoring the ecological consequences of management actions to improve management decisions. Although the concept originated in the 1970s, it is rarely actively incorporated into ecological restoration. Bayesian networks (BNs) are emerging as efficient ecological decision‐support tools well suited to adaptive management, but examples of their application in this capacity are few. We developed a BN within an adaptive‐management framework that focuses on managing the effects of feral grazing and prescribed burning regimes on avian diversity within woodlands of subtropical eastern Australia. We constructed the BN with baseline data to predict bird abundance as a function of habitat structure, grazing pressure, and prescribed burning. Results of sensitivity analyses suggested that grazing pressure increased the abundance of aggressive honeyeaters, which in turn had a strong negative effect on small passerines. Management interventions to reduce pressure of feral grazing and prescribed burning were then conducted, after which we collected a second set of field data to test the response of small passerines to these measures. We used these data, which incorporated ecological changes that may have resulted from the management interventions, to validate and update the BN. The network predictions of small passerine abundance under the new habitat and management conditions were very accurate. The updated BN concluded the first iteration of adaptive management and will be used in planning the next round of management interventions. The unique belief‐updating feature of BNs provides land managers with the flexibility to predict outcomes and evaluate the effectiveness of management interventions. 相似文献
85.
Abstract: Conservation and restoration goals are often defined by historical baseline conditions that occurred prior to a particular period of human disturbance, such as European settlement in North America. Nevertheless, if ecosystems were heavily influenced by native peoples prior to European settlement, conservation efforts may require active management rather than simple removal of or reductions in recent forms of disturbance. We used pre‐European settlement land survey records (1859–1874) and contemporary vegetation surveys to assess changes over the past 150 years in tree species and habitat composition, forest density, and tree size structure on southern Vancouver Island and Saltspring Island, British Columbia, Canada. Several lines of evidence support the hypothesis that frequent historical burning by native peoples, and subsequent fire suppression, have played dominant roles in shaping this landscape. First, the relative frequency of fire‐sensitive species (e.g., cedar [Thuja plicata]) has increased, whereas fire‐tolerant species (e.g., Douglas‐fir [Pseudotsuga menziesii]) have decreased. Tree density has increased 2‐fold, and the proportion of the landscape in forest has greatly increased at the expense of open habitats (plains, savannas), which today contain most of the region's threatened species. Finally, the frequency distribution of tree size has shifted from unimodal to monotonically decreasing, which suggests removal of an important barrier to tree recruitment. In addition, although most of the open habitats are associated with Garry oak (Quercus garryana) at present, most of the open habitats prior to European settlement were associated with Douglas‐fir, which suggests that the current focus on Garry oak as a flagship for the many rare species in savannas may be misguided. Overall, our results indicate that the maintenance and restoration of open habitats will require active management and that historical records can provide critical guidance to such efforts. 相似文献
86.
土壤环境基准是土壤环境质量标准制修订、土壤环境质量评价和监管的重要科学依据。笔者选取美国和澳大利亚基于保护生态的土壤基准制订中的关键技术进行深入讨论,从两国的制订策略和关键推导方法等方面进行详细阐述,比对了两国的基准值制订技术要点。结果表明,两国的土壤基准名称、保护对象和毒理数据处理措施等存在差异,这与各国的具体制定策略有密切关联。建议我国在基准制订中加强不同区域土壤基准的针对性研究,建立本国土壤毒性数据共享平台,为土壤环境质量标准的制修订提供数据支撑。 相似文献
87.
作为重要的纳米稀土化合物,纳米二氧化铈(CeO2)被广泛应用于工、农、医学等领域,随之而来的是大量的纳米CeO2在其生产使用和处理处置等过程中被释放进入到环境中,进而导致其生物安全性受到越来越多的关注。本文从纳米CeO2对细胞、组织器官、植物、水生生物和土壤生物产生的毒性效应入手,系统综述了纳米CeO2的潜在环境生态风险;进一步从物理损伤和化学抑制2个方面剖析了纳米CeO2的生物毒性作用机制;最后基于已有的关于纳米CeO2生态风险的研究中存在的不足对未来发展方向进行了展望。本文旨在为纳米CeO2的生态安全评价提供理论基础和科学依据。 相似文献
88.
89.
90.
适宜的生态需水量是保障河道生态系统健康的重要因素,合理地计算生态需水量对河道生态系统评估具有现实意义。以鄂北地区典型浅丘河道——水河为例,基于Qp法(不同频率最枯月平均值法)、频率曲线法、最小月平均流量法、Tennant法及生物习性法5种方法的生态流量计算结果,探讨了各方法计算结果的合理性与适用性。结果表明:由于上下游河道水文条件差异性,上游断面采用生物习性法能较好地拟合河道水文节律变化和水质波动;同理,下游断面采用频率曲线法更加匹配下游河道水文、水质情况。因此,在河道上、下游断面分别采用生物习性法、频率曲线法计算得到适宜生态需水量为0.21 m^3/s、2.02 m^3/s。 相似文献