首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2734篇
  免费   294篇
  国内免费   1554篇
安全科学   158篇
废物处理   335篇
环保管理   169篇
综合类   2252篇
基础理论   654篇
污染及防治   796篇
评价与监测   185篇
社会与环境   22篇
灾害及防治   11篇
  2024年   7篇
  2023年   57篇
  2022年   81篇
  2021年   99篇
  2020年   107篇
  2019年   97篇
  2018年   122篇
  2017年   161篇
  2016年   203篇
  2015年   194篇
  2014年   202篇
  2013年   313篇
  2012年   266篇
  2011年   251篇
  2010年   206篇
  2009年   202篇
  2008年   179篇
  2007年   244篇
  2006年   218篇
  2005年   172篇
  2004年   143篇
  2003年   134篇
  2002年   125篇
  2001年   97篇
  2000年   98篇
  1999年   98篇
  1998年   96篇
  1997年   72篇
  1996年   68篇
  1995年   55篇
  1994年   39篇
  1993年   25篇
  1992年   37篇
  1991年   40篇
  1990年   18篇
  1989年   13篇
  1988年   11篇
  1987年   11篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1978年   3篇
  1977年   2篇
  1976年   1篇
  1973年   2篇
排序方式: 共有4582条查询结果,搜索用时 15 毫秒
941.
ABSTRACT

Phenanthrene is a toxic and mutagenic pollutant that can cause severe environmental and human health issues. The bioremediation of these polyaromatic hydrocarbons (PAHs) is possible with a biosurfactant by enhancing hydrophobicity. In this study, the production of a biosurfactant by Bacillus pumilus 1529 and its effects on the phenanthrene biodegradation pathway were examined. Biosurfactant production was determined using hemolytic activity, emulsification index, and surface tension. For phenanthrene metabolite detection, samples at 0, 7, 14, and 21 incubation days were analysed by gas chromatography-mass (GC-mass) spectrometry. The results showed that Bacillus pumilus 1529 can reduce surface tension to 22.83?±?1.1?mN?m?1. Furthermore, the GC-mass spectrometry analysis showed that 1-hydroxy-2-naphthoic acid, benzaldehyde, o-phthalic acid, and phenylacetic acid were notable phenanthrene metabolites produced during phenanthrene biodegradation. Biodegraded phenanthrene and its metabolites have a less toxic effect on the germination of safflower seeds than non-biodegraded phenanthrene. The IC50 of phenanthrene on seed germination after biodegradation was increased to approximately 113?mg?L?1. In general, biodegradation aided by biosurfactant producing bacteria contributed to turning the toxic phenanthrene into less harmful metabolites with lower phytotoxicity effects, indicating that its application in the bioremediation of PAHs is promising.  相似文献   
942.
• DPAA sorption data was found to fit the Freundlich equation. Kf was significantly positive correlated with oxalate-extractable Fe2O3. • Ligand exchange was the main mechanism for DPAA sorption on soils. • Bidentate binuclear and monodentate mononuclear DPAA bonds were identified. Diphenylarsinic acid (DPAA) is a phenyl arsenic compound derived from chemical warfare weapons. Macroscopic and microscopic work on DPAA sorption will provide useful information in predicting the partitioning and mobility of DPAA in the soil-water environment. Here, batch experiments and extended X-ray absorption fine structure (EXAFS) spectroscopy were used to investigate the sorption mechanisms of DPAA. The DPAA sorption data from 11 soil types was found to fit the Freundlich equation, and the sorption capacity, Kf, was significantly and positively correlated with oxalate-extractable Fe2O3. The Kf values of eight of the 11 untreated soils (1.51–113.04) significantly decreased upon removal of amorphous metal (hydr)oxides (0.51–13.37). When both amorphous and crystalline metal (hydr)oxides were removed from the untreated soils, the Kf values either decreased or slightly increased (0.65–3.09). Subsequent removal of soil organic matter from these amorphous and crystalline metal (hydr)oxide-depleted samples led to further decreases in Kf to 0.02–1.38, with only one exception (Sulfic Aquic-Orthic Halosols). These findings strongly suggest that ligand exchange reactions with amorphous metal (hydr)oxides contribute most to DPAA sorption on soils. EXAFS data provide further evidence that DPAA primarily formed bidentate binuclear (2C) and monodentate mononuclear (1V) coring-sharing complexes with As-Fe distances of 3.34 and 3.66 Å, respectively, on Fe (hydr)oxides. Comparison of these results with earlier studies suggests that 2C and 1V complexes of DPAA may be favored under low and high surface coverages, respectively, with the formation of 1V bonds possibly conserving the sorption sites or decreasing the steric hindrance derived from phenyl substituents.  相似文献   
943.
氯化石蜡(chlorinated paraffins, CPs)在中国大量生产和使用,导致其在环境介质中的含量较高。采用拟靶向代谢组学技术,比较研究了短、中和长链氯化石蜡在人体内暴露水平下(100μg·L~(-1))对HepG2细胞代谢的影响。结果表明,短、中和长链氯化石蜡暴露引起了HepG2细胞增殖活力的降低与代谢活动的显著变化。短链氯化石蜡(SCCPs)暴露对细胞代谢的影响强度略高于中链氯化石蜡(MCCPs)和长链氯化石蜡(LCCPs)。3种氯化石蜡均显著扰乱了脂质代谢,且影响程度相近。显著受影响的代谢通路包括:甘油磷脂代谢、亚油酸代谢、α-亚麻酸代谢、花生四烯酸代谢和鞘磷脂代谢。同时,3种氯化石蜡暴露也显著扰乱了甘氨酸、丝氨酸和苏氨酸代谢,缬氨酸、亮氨酸和异亮氨酸生物合成,牛磺酸和亚牛磺酸代谢;此外,LCCPs还扰乱了苯丙氨酸、酪氨酸和色氨酸生物合成通路。相比于SCCPs和MCCPs,LCCPs对氨基酸代谢表现出更强的干扰效应。  相似文献   
944.
两种有机酸存在下铜对中华圆田螺肝脏的氧化应激效应   总被引:1,自引:0,他引:1  
为探讨不同水平EDTA和柠檬酸(CA)作用下沉积物中铜对底栖无脊椎动物生态毒理学效应,以中华圆田螺为受试生物,研究了肝脏中活性氧(ROS)、丙二醛(MDA)含量、超氧化物歧化酶(SOD)以及过氧化氢酶(CAT)活性的变化规律。研究结果表明:有机酸存在下,铜污染底泥可诱导中华圆田螺肝脏产生ROS。电子顺磁共振(EPR)技术得出的3组双重峰分裂谱线为典型的α-苯基-N-叔丁基甲亚胺-N-氧化物(PBN)捕获羟自由基(·OH)形成PBN/·OH的EPR波谱。有机酸存在下,低剂量铜(≤100 mg·kg-1)对MDA产量影响不显著。较高剂量铜暴露下,EDTA的存在抑制MDA产生,CA的添加则均使MDA含量增加。EDTA存在下铜可显著抑制中华圆田螺肝脏中SOD和CAT活性。相对而言,CA的加入可减缓高剂量铜暴露下中华圆田螺肝脏SOD与CAT酶活性的剧烈变化。  相似文献   
945.
短链氯化石蜡(short-chain chlorinated paraffins,SCCPs)是一组成分复杂的氯代正构烷烃,在环境中普遍存在。然而有关其毒性机理的信息十分有限,限制了对其健康风险的评估。本研究采用液相色谱–串联质谱(LC-MS/MS)分析技术,研究了不同剂量的SCCPs暴露(0、1.0、10.0和100.0μg·L-1;C13-CPs;55.0%Cl)对人体肝癌细胞Hep G2的糖代谢、氨基酸代谢和脂肪酸代谢的影响。通过偏最小二乘判别分析(PLS-DA)鉴别各组代谢产物谱差异,发现3个SCCPs暴露剂量组均能够与对照组完全分开,表明SCCPs短期暴露能够引起细胞代谢活动的显著改变。SCCPs的低剂量暴露可明显刺激Hep G2细胞对氨基酸的吸收。与对照组相比,SCCPs低剂量暴露组(1.0μg·L-1)培养基中谷氨酰胺、色氨酸和丝氨酸的含量显著(P0.05)降低。而高剂量SCCPs(100.0μg·L-1)暴露抑制了细胞对氨基酸和葡萄糖吸收,但促进了乳酸、丙氨酸、半胱氨酸的生成。氨基酸吸收的抑制不可避免地会影响蛋白质的合成。同时,SCCPs的暴露使饱和脂肪酸代谢紊乱,使不饱和脂肪酸水平上调。为确定SCCPs的毒性作用方式,有必要从转录组和蛋白组层面进一步研究其毒性机制。  相似文献   
946.
Land use conversion is an important factor influencing the carbon gas exchange between land and atmosphere. The effect of land use conversion on soil organic carbon mineralization and microbial function is important for soil organic carbon sequestration and stability. This research studied the effects of land use conversion on soil chemical properties, organic carbon mineralization and microbial community structure after two years of conversion from double rice cropping (RR) to maize-maize (MM) and soybean-peanut (SP) double cropping systems in southern China. The results showed that soil pH significantly decreased by 0.50 (MM) and 0.52 (SP, P = 0.002), and dissolved organic carbon significantly increased by 23%- 35% (P = 0.016). No significant difference was found in soil organic carbon mineralization rate with the land use conversion, though the accumulated mineralization decreased after 13 days of incubation (P = 0.019). Land use conversion from paddy to upland significantly changed soil microbial community structure. The total PLFAs, bacterial, gram-positive bacterial (G+), gram-negative bacterial (G-) and actinomycetic PLFAs decreased significantly (P < 0.05), the ratio of fungal PLFAs to bacterial PLFAs (F/B) increased significantly (P = 0.006). But no significant differences in microbial groups were found between MM and SP. The accumulated mineralization at the beginning period of the incubation were significantly positively correlated with soil actinomycetic PLFAs (P = 0.034). After 13 days of incubation, soil F/B showed a positive correlation with the accumulated mineralization (P = 0.004). However, soil microbial community structure(P = 0.014)and total PLFAs(P = 0.033)showed a positive correlation with the accumulated mineralization after 108 days of incubation. Our results indicated that after conversion from paddy soils to drained soils, soil pH and total nitrogen are the key factors regulating the variations in soil microbial community structure and biomass, and then influencing soil organic carbon mineralization.  相似文献   
947.
Nucleic acids and their analogues are getting more and more attention. Metal-mediated base pairs as a kind of simple and functionalized nucleic acids in special positions have widened the scope of application of functional nucleic acids and their analogues. In this type of base pairs, the representative is the interaction between metal ions and pyrimidine bases, especially the research on thymine-Hg2+-thymine (T-Hg2+-T) and cytosine-Ag+-cytosine (C-Ag+-C) base pairs. This review summarizes the structure and mechanism of metal-mediate pyrimidine base pairs as well as the application in the biochemical analysis. It explores the mode and ratio of coordination between metal ions and base pairs, the effects on the stability of DNA helical structure, the related crystal structure and the three-dimensional configuration information in the DNA helix. The analytical application mainly includes various probes of metal ions, small molecules, protein and the detection of single nucleotide polymorphism. Among them the most widely used metal ions detection, and its combination with spectrum technology, visualization and amplification technology greatly promoted the rapid development of sensitive detection technology. In further studies, it is necessary to reveal the mechanism of interaction between T-Hg2+-T and C-Ag+-C, and more attention should be paid to combining of T-Hg2+-T and C-Ag+-C base pairs with other new technologies. The scope of practical application should also be further extended.  相似文献   
948.
Anionic dyes are hazardous and toxic to living organisms. For this study, ferrihydrite was prepared to test its removal capabilities on anionic dyes. A ferrihydrite particle prepared in neutral environmental conditions is sphere-like with a diameter of 2–4 nm and its total surface area is approximately 229 m2·g-1. In this paper, the effects of solution pH, competitive anions, and temperature on the adsorption of acid fuchsine onto ferrihydrite and the regeneration-reutilization of ferrihydrite were investigated in detail. The results indicate that ferrihydrite is an efficient sorbent for the removal of acid fuchsine at pH 4.0. The inhibitory effect of various competing anions on the present adsorption follows the precedence relationship: NO3-<Cl-<SO42-<H2PO4-. Adsorption isotherms of acid fuchsine on ferrihydrite fit the Langmuir equation well. The Gibbs free energy, enthalpy, and entropy data of adsorption indicate that this adsorption is a spontaneous, exothermic, and physical process. A ferrihydrite was regenerated and reused five times, still retaining its original adsorption capacity.  相似文献   
949.
This research investigates the performances of RuO2/ZrO2-CeO2 in catalytic ozonation for water treatment. The results show that RuO2/ZrO2-CeO2 was active for the catalytic ozonation of oxalic acid and possessed higher stability than RuO2/Al2O3 and Ru/AC. In the catalytic ozonation of dimethyl phthalate (DMP), RuO2/ZrO2-CeO2 did not enhance the DMP degradation rate but significantly improved the total organic carbon (TOC) removal rate. The TOC removal in catalytic ozonation was 56% more than that in noncatalytic ozonation. However this does not mean the catalyst was very active because the contribution of catalysis to the overall TOC removal was only 30%. The adsorption of the intermediates on RuO2/ZrO2-CeO2 played an important role on the overall TOC removal while the adsorption of DMP on it was negligible. This adsorption difference was due to their different ozonation rates. In the catalytic ozonation of disinfection byproduct precursors with RuO2/ZrO2-CeO2, the reductions of the haloacetic acid and trihalomethane formation potentials (HAAFPs and THMFPs) for the natural water samples were 38%–57% and 50%–64%, respectively. The catalyst significantly promoted the reduction of HAAFPs but insignificantly improved the reduction of THMFPs as ozone reacts fast with the THMs precursors. These results illustrate the good promise of RuO2/ZrO2-CeO2 in catalytic ozonation for water treatment.  相似文献   
950.
The aggregation of common manganese dioxide (MnO2) colloids has great impact on their surface reactivity and therefore on their fates as well as associated natural and synthetic contaminants in engineered (e.g. water treatment) and natural aquatic environments. Nevertheless, little is known about the aggregation kinetics of MnO2 colloids and the effect of humic acid (HA) and surfactants on these. In this study, the early stage aggregation kinetics of MnO2 nanoparticles in NaNO3 and Ca(NO3)2 solutions in the presence of HA and surfactants (i.e., sodium dodecyl sulfate (SDS), and polyvinylpyrrolidone (PVP)) were modeled through time-resolved dynamic light scattering. In the presence of HA, MnO2 colloids were significantly stabilized with a critical coagulation concentration (CCC) of ~300 mmol·L-1 NaNO3 and 4 mmol·L-1 Ca(NO3)2. Electrophoretic mobility (EPM) measurements confirmed that steric hindrance may be primarily responsible for increasing colloidal stability in the presence of HA. Moreover, the molecular and/or chemical properties of HA might impact its stabilizing efficiency. In the case of PVP, only a slight increase of aggregation kinetics was observed, due to steric reactions originating from adsorbed layers of PVP on the MnO2 surface. Consequently, higher CCC values were obtained in the presence of PVP. However, there was a negligible reduction in MnO2 colloidal stability in the presence of 20 mg·L-1SDS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号