首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10554篇
  免费   939篇
  国内免费   2361篇
安全科学   1898篇
废物处理   1131篇
环保管理   1523篇
综合类   6410篇
基础理论   720篇
环境理论   5篇
污染及防治   1487篇
评价与监测   487篇
社会与环境   120篇
灾害及防治   73篇
  2024年   16篇
  2023年   103篇
  2022年   187篇
  2021年   287篇
  2020年   317篇
  2019年   265篇
  2018年   235篇
  2017年   302篇
  2016年   368篇
  2015年   465篇
  2014年   592篇
  2013年   736篇
  2012年   868篇
  2011年   835篇
  2010年   638篇
  2009年   703篇
  2008年   484篇
  2007年   819篇
  2006年   927篇
  2005年   681篇
  2004年   569篇
  2003年   583篇
  2002年   495篇
  2001年   438篇
  2000年   401篇
  1999年   355篇
  1998年   256篇
  1997年   226篇
  1996年   180篇
  1995年   145篇
  1994年   120篇
  1993年   81篇
  1992年   52篇
  1991年   39篇
  1990年   23篇
  1989年   8篇
  1988年   7篇
  1987年   4篇
  1986年   7篇
  1982年   3篇
  1981年   4篇
  1980年   3篇
  1978年   2篇
  1977年   2篇
  1975年   2篇
  1974年   3篇
  1973年   4篇
  1972年   3篇
  1971年   3篇
  1970年   2篇
排序方式: 共有10000条查询结果,搜索用时 531 毫秒
631.
为提高海洋油气管道外腐蚀速率预测的精度和效率,建立基于因子分析(FA)和天牛须搜索算法(BAS)的极限学习机(ELM)腐蚀速率预测模型。利用FA对影响因素数据集进行降维处理,确定预测模型的输入变量;建立ELM预测模型,并采用BAS对ELM模型的参数进行优化,避免参数取值随机性对模型预测性能的影响;以实海挂片试验为例,通过建模仿真评价模型的预测性能,并与其他模型进行对比分析。结果表明:FA-BAS-ELM预测模型的平均绝对误差(MAPE)仅为1.92%,决定系数R2高达0.994 9,相比于其他模型,该模型具有更优的预测性能。  相似文献   
632.
研究了烟草中六六六及滴滴涕异构体含量的气相色谱分析方法.样品以石油醚 丙酮在索氏提取器中提取,提取液以浓硫酸净化.采用DB-5弹性石英毛细管柱分离样品,GC-ECD检测农药六六六、滴滴涕的残留量.方法的线性范围为2.27×10-13~7.66×10-11g;最小检测量为1.3×10-8~3.0×10-7 μg,加标平均回收率为95.3%~103.3%,RSD为2.8%~4.5%.  相似文献   
633.
开展基于特定物质吸收光谱及其谐波检测技术的气体检测装置的实验研究.检测装置采用频率稳定措施,使激光频率始终控制在待测气体的吸收谱线上,对环境的抗干扰能力强,不会产生误判.不需要经常标定,不需要采样.  相似文献   
634.
液化天然气(LNG)瞬时泄漏扩散的模拟研究   总被引:1,自引:0,他引:1  
对液化天然气泄漏扩散过程进行了分析,考虑其泄漏后发生闪蒸时的液滴夹带以及混合空气量,将闪蒸完的状态作为箱模型的初始状态,考虑空气的湿度影响建立了重气扩散过程的箱模型,并应用实例进行了验证,得出了泄漏后有火灾爆炸危险性的区域以及距离泄漏源的位置,为应急救援预案的制定提供参考,模拟结果显示了重气扩散过程中的重力沉降,空气夹带等一般特征,同时云团初始闪蒸时的液滴夹带对云团的扩散行为具有一定的影响,不能忽略.最后提出了今后的研究方向.  相似文献   
635.
从膨润土中筛选出可在含2 g/L苯酚的PDA培养基上生长的菌种,经过逐级驯化,得到1株可以在1 g/L苯酚的无机盐固体培养基上生长并降解苯酚的优势菌种HJ01,其对苯酚600 g/L降解率可达94%.该菌生长的适宜碳源和氮源分别为蔗糖和NH4Cl,温度为25 ℃,pH值范围为6-7.  相似文献   
636.
根据某化工厂煤气生产工艺流程,研究预防CO气体泄漏引起的火灾、爆炸和中毒事故的监控系统,分析监控系统的工作原理及电路图,对CO监控技术的研究和气体传感器的研制有重要的参考价值.  相似文献   
637.
GOAL, SCOPE, AND BACKGROUND: Diesel exhaust is believed to consist of thousands of organic constituents and is a major cause of urban pollution. We recently reported that a systematic separation procedure involving successive solvent extractions, followed by repeated column chromatography, resulted in the isolation of vasodilatory active nitrophenols. These findings indicated that the estimation of the amount of nitrophenols in the environment is important to evaluate their effect on human health. The isolation procedure, however, involved successive solvent extractions followed by tedious, repeated chromatography, resulting in poor fractionation and in a significant loss of accuracy and reliability. Therefore, it was crucial to develop an alternative, efficient, and reliable analytical method. Here, we describe a facile and efficient acid-base extraction procedure for the analysis of nitrophenols. MATERIALS AND METHODS: Diesel exhaust particles (DEP) were collected from the exhaust of a 4JB1-type engine (ISUZU Automobile Co., Tokyo, Japan). Gas chromatography-mass spectrometry (GC-MS) analysis was performed with a GCMS-QP2010 instrument (Shimadzu, Kyoto, Japan). RESULTS: A solution of DEP in 1-butanol was extracted with aqueous NaOH to afford a nitrophenol-rich oily extract. The resulting oil was methylated with trimethylsilyldiazomethane and subsequently subjected to GC-MS analysis, revealing that 4-nitrophenol, 3-methyl-4-nitrophenol, 2-methyl-4-nitrophenol, and 4-nitro-3-phenylphenol were present in significantly higher concentrations than those reported previously. DISCUSSION: Simple acid-base extraction followed by the direct analysis of the resulting extract by GC-MS gave only broad peaks of nitrophenols with a poor detection limit, while the GC-MS analysis of the sample pretreated with (trimethylsilyl)diazomethane gave satisfactorily clear chromatograms with sharp peaks and with a significantly lowered detection limit (0.5 ng/ml, approximately 100 times). CONCLUSION: The present method involving an acid-base extraction, in situ derivatization, and GC-MS analysis has shown to be a simple, efficient, and reliable method for the isolation and identification of the chemical substances in DEP.  相似文献   
638.
Sulphur cycling and its correlation to removal processes under dynamic redox conditions in the rhizosphere of helophytes in treatment wetlands are poorly understood. Therefore, long-term experiments were performed in laboratory-scale constructed wetlands treating artificial domestic wastewater in order to investigate the dynamics of sulphur compounds, the responses of plants and nitrifying microorganisms under carbon surplus conditions, and the generation of methane. For carbon surplus conditions (carbon:sulphate of 2.8:1) sulphate reduction happened but was repressed, in contrast to unplanted filters mentioned in literature. Doubling the carbon load caused stable and efficient sulphate reduction, rising of pH, increasing enrichment of S(2-) and S(0) in pore water, and finally plant death and inhibition of nitrification by sulphide toxicity. The data show a clear correlation of the occurrence of reduced S-species with decreasing C and N removal performance and plant viability in the experimental constructed wetlands.  相似文献   
639.
BACKGROUND, AIM, AND SCOPE: The presence of a variety of pollutants in the aquatic environment that can potentially interfere with the production of sex steroid hormones in wildlife and humans has been of increasing concern. The aim of the present study was to investigate the effects of extracts from Hong Kong marine waters, and influents and effluents from wastewater treatment plants on steroidogenesis using the H295R cell bioassay. After exposing H295R cells to extracts of water, the expression of four steroidogenic genes and the production of three steroid hormones were measured. MATERIALS AND METHODS: Water samples were collected during the summer of 2005 from 24 coastal marine areas and from the influents and effluents of two major waste water treatment plants (WWTPs) in Hong Kong, China. Samples were extracted by solid phase extraction (SPE). H295R cells were exposed for 48 h to dilutions of these extracts. Modulations of the expression of the steroidogenic genes CYP19, CYP17, 3betaHSD2, and CYP11beta2 were determined by measuring mRNA concentrations by real-time polymerase chain reaction (Q-RT-PCR). Production of the hormones progesterone (P), estradiol (E2), and testosterone (T) was quantified using enzyme linked immunosorbent assays (ELISA). RESULTS: Extracts from samples collected in two fish culture areas inhibited growth and proliferation of H295R cells at concentrations greater or equal to 10(5) L equivalents. The cells were exposed to the equivalent concentration of active substances in 10,000 L of water. Thus, to observe the same level of effect as observed in vitro on aquatic organisms would require a bioaccumulation factor of this same magnitude. None of the other 22 marine samples affected growth of the cells at any dilution tested. Twelve of the marine water samples completely inhibited the expression of CYP19 without affecting E2 production; inhibition of CYP17 expression was observed only in one of the samples while expression of CYP11beta2 was induced as much as five- and ninefold after exposure of cells to extracts from two locations. The expression of the progesterone gene 3betaHSD2 was not affected by any of the samples; only one sample induced approximately fourfold the production of E2. Although more than twofold inductions were observed for P and T production, none of these values were statistically significant to conclude effects on the production of these two hormones. While influents from WWTPs did not affect gene expression, an approximately 30% inhibition in the production of E2 and a 40% increase in P occurred for the exposure with influents from the Sha Tin and Stonecutters WWTPs, respectively. Effluents from WWTPs did not affect the production of any of the studied hormones, but a decrement in the expression of the aldosterone gene CYP11beta2 was observed for the Sha Tin WWTP exposure. No direct correlation could be established between gene expression and hormone production. DISCUSSION: Observed cytotoxicity in the two samples from fish culture areas suggest the presence of toxic compounds; chemical analysis is required for their full identification. Although effluents from WWTPs did not affect hormone production, other types of endocrine activity such as receptor-mediated effects cannot be ruled out. Interactions due to the complexity of the samples and alternative steroidogenic pathways might explain the lack of correlation between gene expression and hormone production results. CONCLUSIONS: Changes observed in gene expression and hormone production suggest the presence in Hong Kong coastal waters of pollutants with endocrine disruption potential and others of significant toxic effects. The aromatase and aldosterone genes seem to be the most affected by the exposures, while E2 and P are the hormones with more significant changes observed. Results also suggest effectiveness in the removing of compounds with endocrine activity by the WWTPs studied, as effluent samples did not significantly affect hormone production. The H295R cell showed to be a valuable toll in the battery required for the analysis of endocrine disrupting activities of complex environmental samples. RECOMMENDATIONS AND PERSPECTIVES: Due to the intrinsic complexity of environmental samples, a combination of analytical tools is required to realistically assess environmental conditions, especially in aquatic systems. In the evaluation of endocrine disrupting activities, the H295R cell bioassay should be used in combination with other genomic, biological, chemical, and hydrological tests to establish viable modes for endocrine disruption and identify compounds responsible for the observed effects.  相似文献   
640.
Background, aims, and scope  Sometimes, urban wastewaters convey a more or less significant part of toxic products from industries or the craft industry. Nitrifying activity can be affected by these substances, implying higher ammonia concentrations in the outlet effluent and contributing to toxicity for the aquatic environment. Moreover, the more stringently treated wastewater standards now require a reliable treatment for nitrogen. One of the key issues is the identification of the inhibition behavior of nitrifying bacteria facing a toxic substance. This new understanding could then finally be integrated into models in order to represent and to optimize wastewater treatment plants (WWTP) operation in cases involving ‘toxic scenarios’. Materials and methods  The toxic substances studied in this work, cadmium and 3.5-dichlorophenol (3.5-DCP), are representative of chemical substances commonly found in municipal sewage and industrial effluents and symbolize two different contaminant groups. The effects of Cd and 3.5-DCP on nitrification kinetics have been investigated using respirometry techniques. Results  IC50 values determination gives concentrations of 3.1 mg/L for 3.5-DCP and 45.8 mg/L for Cd at 21 ± 1°C. The variation to low temperature seems to have no real effect on IC50 for DCP, but induces a decrease of cadmium IC50 to 27.5 mg/L at 14°C. Finally, specific respirometric tests have been carried out in order to determine the potential effect of these toxic substances on the nitrifying decay rate b a . No significant effect has been noticed for Cd, whereas the presence of 3.5-DCP (at IC50 concentration) induced a dramatic increase of b a at 20°C. The same behavior has been confirmed by experiments performed in winter periods with a sludge temperature around 12°C. Discussion  The target substances have different modes of action on activity and mortality, notably due to the abilities of the contaminant to be precipitated, accumulated, or even to be progressively degraded. Studies realized at low temperature confirmed this assumption, and put in evidence the effect of temperature on toxic substances capable of being biosorbed. However, the change in the sludge sample characteristics can be pointed out as a problem in the investigation of the temperature effect on nitrification inhibition, as biosorption, bioaccumulation, and predation are directly linked to the sludge characteristics (VSS concentration, temperature) and the plant operating conditions (loading rates, sludge age, etc.). Conclusions  This work brings new understandings concerning the action mode of these specific contaminants on nitrifying bacteria and, in particular, on the role of temperature. The experiments lead to the determination of the IC50 values for both toxic substances on biological nitrification. The inhibition mechanisms of Cd and 3.5-DCP on nitrifying activity have been simply represented by a non-competitive inhibition model. Recommendations and perspectives  Other experiments carried out in a continuous lab-scale pilot plant should be done with a proper control of the operating conditions and of the sludge characteristics in order to better understand the mechanisms of nitrification inhibition for each contaminant. Finally, these first results show that toxic substances can have an effect on the growth rate but also on the decay rate, depending on the characteristics of the toxic substance and the sludge. This eventual double effect would imply different strategies of WWTP operation according to the behavior of the contaminant on the bacteria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号