首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   372篇
  免费   48篇
  国内免费   377篇
安全科学   37篇
废物处理   11篇
环保管理   18篇
综合类   446篇
基础理论   96篇
污染及防治   174篇
评价与监测   9篇
社会与环境   6篇
  2024年   3篇
  2023年   16篇
  2022年   44篇
  2021年   40篇
  2020年   31篇
  2019年   41篇
  2018年   39篇
  2017年   36篇
  2016年   38篇
  2015年   38篇
  2014年   29篇
  2013年   44篇
  2012年   58篇
  2011年   47篇
  2010年   30篇
  2009年   28篇
  2008年   31篇
  2007年   28篇
  2006年   35篇
  2005年   16篇
  2004年   21篇
  2003年   17篇
  2002年   10篇
  2001年   16篇
  2000年   12篇
  1999年   4篇
  1998年   9篇
  1997年   5篇
  1996年   3篇
  1995年   4篇
  1994年   4篇
  1993年   5篇
  1991年   2篇
  1990年   5篇
  1989年   1篇
  1988年   3篇
  1982年   2篇
  1979年   2篇
排序方式: 共有797条查询结果,搜索用时 15 毫秒
21.
In order to measure groundwater age and design nuclear waste disposal sites, it is important to understand the sorption behavior of tritium on soils. In this study, batch tests were carried out using four soils from China: silty clays from An County and Jiangyou County in Sichuan Province, both of which could be considered candidate sites for Very Low Level Waste disposal; silty sand from Beijing; and loess from Yuci County in Shanxi Province, a typical Chinese loess region. The experimental results indicated that in these soil media, the distribution coefficient of tritium is slightly influenced by adsorption time, water/solid ratio, initial tritium specific activity, pH, and the content of humic and fulvic acids. The average distribution coefficient from all of these influencing factors was about 0.1-0.2 mL/g for the four types of soil samples. This relatively modest sorption of tritium in soils needs to be considered in fate and transport studies of tritium in the environment.  相似文献   
22.
The leachates from 22 municipal solid waste (MSW) landfill sites in Southern Poland were characterized by evaluation of chemical, microbiological and ecotoxicological parameters. Chemical analyses were mainly focused on the identification of the priority hazardous substances according to Directive on Priority Substances, 2008/105/EC (a daughter directive of the WFD) in leachates. As showed, only five substances (Cd, Hg, hexachlorobutadiene, pentachlorobenzene and PAHs) were detected in the leachates. The compounds tested were absent or present at very low concentrations. Among them, only PAHs were found in all samples in the range from 0.057 to 77.2 μg L−1. The leachates were contaminated with bacteria, including aerobic, psychrophilic and mesophilic bacteria, coliform and fecal coliforms, and spore-forming-bacteria, including Clostridium perfringens, and with filamentous fungi. From the analysis of specific microorganism groups (indicators of environmental pollution by pathogenic or opportunistic pathogenic organisms) it can be concluded that the landfill leachates showed sanitary and epidemiological hazard. In the ecotoxicological study, a battery of tests comprised of 5 bioassays, i.e. Microtox®, Spirotox, Rotoxkit F™, Thamnotoxkit F™ and Daphtoxkit F™ magna was applied. The leachate samples were classified as toxic in 13.6%, highly toxic in 54.6% and very highly toxic in 31.8%. The Spirotox test was the most sensitive bioassay used. The percentage of class weight score was very high - above 60%; these samples could definitely be considered seriously hazardous and acutely toxic to the fauna and microflora.No correlations were found between the toxicity values and chemical parameters. The toxicity of leachate samples cannot be explained by low levels of the priority pollutants. It seems that other kinds of xenobiotics present in the samples at subacute levels gave the high aggregate toxic effect.The chemical, ecotoxicological and microbiological parameters of the landfill leachates should be analyzed together to assess the environmental risk posed by landfill emissions.  相似文献   
23.
The toxicity of commercially-available CuO and ZnO nanoparticles (NPs) to pathogenic bacteria was compared for a beneficial rhizosphere isolate, Pseudomonas chlororaphis O6. The NPs aggregated, released ions to different extents under the conditions used for bacterial exposure, and associated with bacterial cell surface. Bacterial surface charge was neutralized by NPs, dependent on pH. The CuO NPs were more toxic than the ZnO NPs. The negative surface charge on colloids of extracellular polymeric substances (EPS) was reduced by Cu ions but not by CuO NPs; the EPS protected cells from CuO NPs-toxicity. CuO NPs-toxicity was eliminated by a Cu ion chelator, suggesting that ion release was involved. Neither NPs released alkaline phosphatase from the cells’ periplasm, indicating minimal outer membrane damage. Accumulation of intracellular reactive oxygen species was correlated with CuO NPs lethality. Environmental deposition of NPs could create niches for ion release, with impacts on susceptible soil microbes.  相似文献   
24.
Membrane bioreactor biofouling is usually described as an extracellular matrix in which biopolymers, inorganic salts and active microbes co-exist. For that reason, biomineralization (BM) models can be useful to describe the spatial organization and environmental constraints within the referred scenario. BM arguments were utilized as background in order to (1) evaluate CaCO3 influence on flux decline; pore blocking and cake layer properties (resistance, permeability and compressibility) in a wide range of Chitosan/Bovine serum albumin (BSA) mixtures during step-pressure runs and, (2) perform membrane autopsies in order to explore the genesis of mineralized extracellular building blocks (MEBB) during cake layer build up. Using low molecular weight chitosan (LC) and BSA, 2 L of 5 LC/BSA mixtures (0.25-1.85 ratio) were pumped to an external ultra filtration (UF) membrane (23.5 cm2, hydrophobic, piezoelectric, 100 kDa as molecular weight cut-off). Eight different pressure steps (40 ± 7 to 540 ± 21 kPa) were applied. Each pressure step was held for 900 s. CaCO3 was added to LC/BSA mixtures at 0.5, 1.5 and 3 mM in order to create MEBB during the filtration tests. Membrane autopsies were performed after the filtration tests using thermo gravimetric, scanning microscopy and specific membrane mass (mg cm−2) analyses. Biopolymer-CaCO3 step-pressure filtration created compressible cake layers (with inner voids). The formation of an internal skeleton of MEBB may contribute to irreversible fouling consolidation. A hypothesis for MEBB genesis and development was set forth.  相似文献   
25.
张培  刘芳  马涛  赵朝成  夏璐 《环境工程学报》2011,5(9):1961-1967
循环水系统中的微生物有悬浮态和附着态,悬浮细菌的存在对附着态生物粘泥的生长及特性有明显影响。通过向模拟循环冷却水系统中投加不同数量初始悬浮细菌,考察在营养水平不同的情况下,悬浮细菌数量对生物粘泥化学组成和脱氢酶活性的影响。结果表明,营养水平不同,初始悬浮细菌数量对生物粘泥的化学组成和脱氢酶活性的影响程度不同;在不同营养水平下,应分别控制初始悬浮细菌数量。贫营养下,初始悬浮细菌数量应控制在6×105个/mL左右;中营养下,初始悬浮细菌数量应控制在1×105~2.6×105个/mL之间;富营养下,初始悬浮细菌数量应控制在0.11×105~2.6×105个/mL之间最不利于生物粘泥的生长。  相似文献   
26.
Part V—sorption of pharmaceuticals and personal care products   总被引:5,自引:0,他引:5  
Background, aim, and scope  Pharmaceuticals and personal care products (PPCPs) including antibiotics, endocrine-disrupting chemicals, and veterinary pharmaceuticals are emerging pollutants, and their environmental risk was not emphasized until a decade ago. These compounds have been reported to cause adverse impacts on wildlife and human. However, compared to the studies on hydrophobic organic contaminants (HOCs) whose sorption characteristics is reviewed in Part IV of this review series, information on PPCPs is very limited. Thus, a summary of recent research progress on PPCP sorption in soils or sediments is necessary to clarify research requirements and directions. Main features  We reviewed the research progress on PPCP sorption in soils or sediments highlighting PPCP sorption different from that of HOCs. Special function of humic substances (HSs) on PPCP behavior is summarized according to several features of PPCP–soil or sediment interaction. In addition, we discussed the behavior of xenobiotic chemicals in a three-phase system (dissolved organic matter (DOM)–mineral–water). The complexity of three-phase systems was also discussed. Results  Nonideal sorption of PPCPs in soils or sediments is generally reported, and PPCP sorption behavior is relatively a more complicated process compared to HOC sorption, such as the contribution of inorganic fractions, fast degradation and metabolite sorption, and species-specific sorption mechanism. Thus, mechanistic studies are urgently needed for a better understanding of their environmental risk and for pollution control. Discussion  Recent research progress on nonideal sorption has not been incorporated into fate modeling of xenobiotic chemicals. A major reason is the complexity of the three-phase system. First of all, lack of knowledge in describing DOM fractionation after adsorption by mineral particles is one of the major restrictions for an accurate prediction of xenobiotic chemical behavior in the presence of DOM. Secondly, no explicit mathematical relationship between HS chemical–physical properties, and their sorption characteristics has been proposed. Last but not least, nonlinear interactions could exponentially increase the complexity and uncertainties of environmental fate models for xenobiotics. Discussion on proper simplification of fate modeling in the framework of nonlinear interactions is still unavailable. Conclusions  Although the methodologies and concepts for studying HOC environmental fate could be adopted for PPCP study, their differences should be highly understood. Prediction of PPCP environmental behavior needs to combine contributions from various fractions of soils or sediments and the sorption of their metabolites and different species. Recommendations and perspectives  More detailed studies on PPCP sorption in separated soil or sediment fractions are needed in order to propose a model predicting PPCP sorption in soils or sediments based on soil or sediment properties. The information on sorption of PPCP metabolites and species and the competition between them is still not enough to be incorporated into any predictive models.  相似文献   
27.
Background, aim, and scope  Dissolved humic substances (HS) usually comprise 50–80% of the dissolved organic carbon (DOC) in aquatic ecosystems. From a trophic and biogeochemical perspective, HS has been considered to be highly refractory and is supposed to accumulate in the water. The upsurge of the microbial loop paradigm and the studies on HS photo-degradation into labile DOC gave rise to the belief that microbial processing of DOC should sustain aquatic food webs in humic waters. However, this has not been extensively supported by the literature, since most HS and their photo-products are often oxidized by microbes through respiration in most nutrient-poor humic waters. Here, we review basic concepts, classical studies, and recent data on bacterial and photo-degradation of DOC, comparing the rates of these processes in highly humic ecosystems and other aquatic ecosystems. Materials and methods  We based our review on classical and recent findings from the fields of biogeochemistry and microbial ecology, highlighting some odd results from highly humic Brazilian tropical lagoons, which can reach up to 160 mg C L−1. Results and discussion  Highly humic tropical lagoons showed proportionally lower bacterial production rates and higher bacterial respiration rates (i.e., lower bacterial growth efficiency) than other lakes. Zooplankton showed similar δ13C to microalgae but not to humic DOC in these highly humic lagoons. Thus, the data reviewed here do not support the microbial loop as an efficient matter transfer pathway in highly humic ecosystems, where it is supposed to play its major role. In addition, we found that some tropical humic ecosystems presented the highest potential DOC photo-chemical mineralization (PM) rates reported in the literature, exceeding up to threefold the rates reported for temperate humic ecosystems. We propose that these atypically high PM rates are the result of a joint effect of the seasonal dynamics of allochthonous humic DOC input to these ecosystems and the high sunlight incidence throughout the year. The sunlight action on DOC is positive to microbial consumption in these highly humic lagoons, but little support is given to the enhancement of bacterial growth efficiency, since the labile photo-chemical products are mostly respired by microbes in the nutrient-poor humic waters. Conclusions  HS may be an important source of energy for aquatic bacteria in humic waters, but it is probably not as important as a substrate to bacterial growth and to aquatic food webs, since HS consumption is mostly channeled through microbial respiration. This especially seems to be the case of humic-rich, nutrient-poor ecosystems, where the microbial loop was supposed to play its major role. Highly humic ecosystems also present the highest PM rates reported in the literature. Finally, light and bacteria can cooperate in order to enhance total carbon degradation in highly humic aquatic ecosystems but with limited effects on aquatic food webs. Recommendations and perspectives  More detailed studies using C- and N-stable isotope techniques and modeling approaches are needed to better understand the actual importance of HS to carbon cycling in highly humic waters.  相似文献   
28.
Controlled release (CR) formulations of azadirachtin-A, a bioactive constituent derived from the seed of Azadirachta indica A. Juss (Meliaceae), have been prepared using commercially available polyvinyl chloride, polyethylene glycol (PEG) and laboratory synthesized poly ethylene glycol–based amphiphilic copolymers. Copolymers of polyethylene glycol and various dimethyl esters, which self assemble into nano micellar aggregates in aqueous media, have been synthesized. The kinetics of azadirachtin-A, release in water from the different formulations was studied. Release from the commercial polyethylene glycol (PEG) formulation was faster than the other CR formulations. The rate of release of encapsulated azadirachtin-A from nano micellar aggregates is reduced by increasing the molecular weight of PEG. The diffusion exponent (n value) of azadirachtin-A, in water ranged from 0.47 to 1.18 in the tested formulations. The release was diffusion controlled with a half release time (t1/2) of 3.05 to 42.80 days in water from different matrices. The results suggest that depending upon the polymer matrix used, the application rate of azadirachtin-A can be optimized to achieve insect control at the desired level and period.  相似文献   
29.
本实验以工业化学合成聚合硫酸铁混凝剂和自制生物聚合硫酸铁为例,考察了铁系混凝剂品种对地表水浊度、TOC和UV254的去除效果,混凝剂品种对混凝-超滤联合工艺处理地表水过程中超滤膜污染的影响。混凝实验结果表明,在10 mg/L(以Fe3+计)最佳投加量下,两类混凝剂对浊度、TOC和UV254的去除率基本相同。超滤膜污染实验结果表明,生物聚合铁预处理水样通量衰减速度略大于化学聚合铁预处理水样;膜污染阻力分析结果显示,随着循环次数的增加,工业化学合成聚合铁预处理水样造成的不可逆污染阻力逐渐增加,而生物聚合铁预处理水样造成的不可逆污染阻力却略有下降;膜污染机理分析表明,2组过滤过程的膜污染类型基本相似,由最初的膜孔堵塞过渡到最终的滤饼层污染。SEM分析表明,生物聚合铁预处理水样的膜污染较为严重。  相似文献   
30.
Ramus K  Kopinke FD  Georgi A 《Chemosphere》2012,86(2):138-143
The effect of dissolved humic substances (DHS) on the rate of water-gas exchange of two volatile organic compounds was studied under various conditions of agitation intensity, solution pH and ionic strength. Mass-transfer coefficients were determined from the rate of depletion of model compounds from an apparatus containing a stirred aqueous solution with continuous purging of the headspace above the solution (dynamic system). Under these conditions, the overall transfer rate is controlled by the mass-transfer resistance on the water side of the water-gas interface. The experimental results show that the presence of DHS hinders the transport of the organic molecules from the water into the gas phase under all investigated conditions. Mass-transfer coefficients were significantly reduced even by low, environmentally relevant concentrations of DHS. The retardation effect increased with increasing DHS concentration. The magnitude of the retardation effect on water-gas exchange was compared for Suwannee River fulvic and humic acids, a commercially available leonardite humic acid and two synthetic surfactants. The observed results are in accordance with the concept of hydrodynamic effects. Surface pressure forces due to surface film formation change the hydrodynamic characteristics of water motion at the water-air interface and thus impede surface renewal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号