首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   955篇
  免费   32篇
  国内免费   81篇
安全科学   41篇
废物处理   8篇
环保管理   303篇
综合类   300篇
基础理论   170篇
污染及防治   32篇
评价与监测   32篇
社会与环境   146篇
灾害及防治   36篇
  2024年   3篇
  2023年   13篇
  2022年   17篇
  2021年   14篇
  2020年   21篇
  2019年   22篇
  2018年   18篇
  2017年   25篇
  2016年   27篇
  2015年   30篇
  2014年   34篇
  2013年   70篇
  2012年   34篇
  2011年   51篇
  2010年   39篇
  2009年   36篇
  2008年   30篇
  2007年   51篇
  2006年   40篇
  2005年   46篇
  2004年   48篇
  2003年   49篇
  2002年   32篇
  2001年   48篇
  2000年   44篇
  1999年   42篇
  1998年   23篇
  1997年   30篇
  1996年   29篇
  1995年   22篇
  1994年   13篇
  1993年   15篇
  1992年   11篇
  1991年   9篇
  1990年   5篇
  1989年   2篇
  1988年   6篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1980年   4篇
  1979年   1篇
  1978年   2篇
  1976年   2篇
  1975年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有1068条查询结果,搜索用时 0 毫秒
381.
ABSTRACT: Assessment and control of nutrient losses from paddy fields is important to protect water quality of lakes and streams in Korea. A four‐year field study was carried out to investigate water management practices and losses of nitrogen (N) and phosphorus (P) in rice paddy irrigation fields in southern Korea. The amount and water quality of rainfall, irrigation, surface drainage, and infiltration were measured and analyzed to estimate inputs and losses of N and P. The observed irrigation amount surpassed consumptive use, and approximately 52 to 69 percent of inflow (precipitation plus irrigation) was lost to surface drainage. Field data showed that significant amounts of irrigation water and rainfall were not effectively used for rice paddy culture. Water quality data indicated that drainage from paddy fields could degrade the recipient water environment. The nutrient balance indicated that significant amounts of nutrients (29.5 percent of total N and 8.6 percent of total P compared to input) were lost through surface drainage. Furthermore, up to half the nutrient losses occurred during nonstorm periods. The study results indicate that inadequate water management influences N and P losses during both storm and nonstorm periods. Proper water management is required to reduce nutrient losses through surface drainage from paddy fields; this includes such measures as minimum irrigation, effective use of rainfall, adoption of proper drainage outlet structures, and minimized forced surface drainage.  相似文献   
382.
Farmland diversification practices (i.e., methods used to produce food sustainably by enhancing biodiversity in cropping systems) are sometimes considered beneficial to both agriculture and biodiversity, but most studies of these practices rely on species richness, diversity, or abundance as a proxy for habitat quality. Biodiversity assessments may miss early clues that populations are imperiled when species presence does not imply persistence. Physiological stress indicators may help identify low-quality habitats before population declines occur. We explored how avian stress indicators respond to on-farm management practices and surrounding seminatural area (1-km radius) across 21 California strawberry farms. We examined whether commonly used biodiversity metrics correlate with stress responses in wild birds. We used ∼1000 blood and feather samples and body mass and wing chord measurements, mostly from passerines, to test the effects of diversification practices on four physiological stress indicators: heterophil to lymphocyte ratios (H:L), body condition, hematocrit values, and feather growth rates of individual birds. We then tested the relationship between physiological stress indicators and species richness, abundance, occurrence, and diversity derived from 285 bird point count surveys. After accounting for other biological drivers, landscape context mediated the effect of local farm management on H:L and body condition. Local diversification practices were associated with reduced individual stress in intensive agricultural landscapes but increased it in landscapes surrounded by relatively more seminatural area. Feathers grew more slowly in landscapes dominated by strawberry production, suggesting that nutritional condition was lower here than in landscapes with more crop types and seminatural areas. We found scant evidence that species richness, abundance, occurrence, or diversity metrics were correlated with the individual's physiological stress, suggesting that reliance on these metrics may obscure the impacts of management on species persistence. Our findings underscore the importance of considering landscape context when designing local management strategies to promote wildlife conservation.  相似文献   
383.
以农业有机废弃物鲜猪粪、干稻草、青草、南瓜叶以及菜叶为原料,沼气产量和甲烷产量为指标,采用4因素3水平的正交实验设计方法对沼气发酵工艺参数优化配置进行了实验研究。结果表明反应器内原料碳氮比、原料固体浓度、反应环境温度以及投加微量元素对沼气发酵均有不同程度的影响,其中反应环境温度对沼气产量的影响显著。最优工艺条件为原料碳氮比25:1、固体浓度8%、温度35℃、投加微量元素Co。  相似文献   
384.
为深入揭示岩溶地下水文系统对外界环境的响应,利用多指标高分辨率在线监测技术对受农业活动影响的重庆青木关地下河水文地球化学变化进行研究.主要的高分辨率监测指标包括水位、电导率(EC)、pH值、降雨和NO 3-.在观测的6场降雨内,地下河水化学特征快速地反映着外界环境的变化.研究区地下水pH值的变化主要受到酸雨的影响,在降雨后都表现出明显的下降趋势,但在农业废水进入地下河系统后,它的变化受到两者的共同影响.EC受到雨水化学、稀释效应及农业活动废水的影响.NO 3-主要是农业活动的产物,受雨水水化学特征的影响较小,它的变化主要受农业废水及稀释效应的影响.在R1降雨影响下,水位上升,EC和NO 3-总体呈相反的快速变化过程而pH值的变化主要受酸雨影响而下降.在R2、R3、R4和R6降雨期,水位受降雨影响而快速的变化,pH值受酸雨影响而下降,EC和NO 3-受稀释效应影响也下降.但随着农业活动废水进入地下河系统,EC和NO 3-浓度在最快5 h最慢仅27 h的时段内同步地急剧升高,pH值也受影响而加速下降.在R5大暴雨期,水位急剧上升,EC和NO 3-受稀释效应影响而急剧下降,pH值先受到酸雨影响而下降,后由于稀释效应...  相似文献   
385.
生物炭技术缓解我国温室效应潜力初步评估   总被引:9,自引:2,他引:9  
姜志翔  郑浩  李锋民  王震宇 《环境科学》2013,34(6):2486-2492
热解制备的生物炭在实现了将植物吸收的大气CO2封存在土壤中的同时,还将产生多重农业生产效应.在调查我国农林废弃物资源可利用潜力的基础上,利用生命周期评价(life cycle assessment,LCA)方法对热解生物炭技术在缓解温室效应方面的潜力进行了初步评估.研究表明,我国每年可供生物炭生产的农林生物质资源总量为6.04×108t;温室效应净潜力(以CO2e计,CO2e为CO2当量)为5.32×108t,相当于每t原料可封存0.88 t.在整个温室效应潜力中,贡献最大的是大气CO2以生物炭形式在土壤中的封存,约为73.94%,其次是副产物可更新能源生产所产生的温室效应潜力,占总潜力的23.85%.由此可见,以农林废弃生物质资源为原料热解制备生物炭的技术对于缓解我国严峻的温室气体排放压力具有巨大的潜力.  相似文献   
386.
The Vercelli rice district in northern Italy plays a key role in the agri-food industry in a country which accounts for more than 50% of the EU rice production and exports roughly 70%. However, although wealth and jobs are created, the sector is said to be responsible for environmental impacts that are increasingly being perceived as topical. As a complex and comprehensive environmental evaluation is necessary to understand and manage the environmental impact of the agri-food chain, the Life Cycle Assessment (LCA) methodology has been applied to the rice production system: from the paddy field to the supermarket. The LCA has pointed out the magnitude of impact per kg of delivered white milled rice: a CO2eq emission of 2.9 kg, a primary energy consumption of 17.8 MJ and the use of 4.9 m3 of water for irrigation purposes. Improvement scenarios have been analysed considering alternative rice farming and food processing methods, such as organic and upland farming, as well as parboiling. The research has shown that organic and upland farming have the potential to decrease the impact per unit of cultivated area. However, due to the lower grain yields, the environmental benefits per kg of the final products are greatly reduced in the case of upland rice production and almost cancelled for organic rice. LCA has proved to be an effective tool for understanding the eco-profile of Italian rice and should be used for transparent and credible communication between suppliers and their customers.  相似文献   
387.
Up to now, several scientific works have noted that the organic sector resembles more and more conventional farming’s structures, what is widely known as the “conventionalization” thesis. This phenomenon constitutes an area of conflict between organic farming’s original vision and its current reality and raises ethical and social questions concerning the structure of agricultural systems of production and their interactions with the socio-economic and natural environment. The main issue of this dialogue is the concept of sustainable agriculture, which for scientists and policymakers is a means to express their vision of a better agriculture. In this article we focus on agricultural sustainability in the context of capitalist production as conducted by the two subsystems of agro-industrial system. As we have proposed in this article, the relationship between organic agriculture, defined by two essential components (prevention and direct marketing), and the agro-industrial complex, defined by two subsystems, indicates the degree of agricultural sustainability. The investigation of this relationship can be extremely useful as it may lead those involved in the discussion of sustainability to identify the key aspects of sustainable agriculture. In order to investigate the interaction of organic farming with the agro-industrial complex, a survey was conducted in Central Macedonia, Northern Greece, involving local organic farms. The results of our study indicate that a large proportion of organic producers did not differ substantially from their counterparts in conventional agriculture in so far as their relationship with the agro-industrial complex is concerned. Finally, this research highlights two scenarios for the evolution of organic farming. The first is the full absorption of organic farming to the existing economic system and the second one is the development of organic farming in a radically opposite direction to conventional farming.  相似文献   
388.
In the wake of the resource constraints for external farm inputs faced by farmers in developing countries, sustainable agriculture practices that rely on renewable local or farm resources present desirable options for enhancing agriculture productivity. In this study, plot-level data from the semi-arid region of Ethiopia, Tigray are used to investigate the factors influencing farmers' decisions to adopt agriculture practices, with a particular focus on conservation tillage, compost and chemical fertilizer. A trivariate probit model is used to analyze the determinants of adoption of these practices. In addition, stochastic dominance analysis is used to compare the productivity impacts of compost with that of chemical fertilizer based on a six-year cross-sectional farm-level dataset. Our results indicate heterogeneity with regard to the factors that influence adoption decisions of the three practices and the importance of both plot and household characteristics on influencing adoption decisions. In particular, we found that household endowments and access to information, among other factors, impact the choice of sustainable farming practices significantly. Furthermore, the use of stochastic dominance analysis supported the contention that sustainable farming practices enhance productivity. They even proved to be superior to the use of chemical fertilizers — justifying the need to investigate factors that influence adoption of these practices and to use this knowledge to formulate policies that encourage adoption.  相似文献   
389.
Understanding changes in soil fertility and soil environmental risks in protected agriculture with high irrigation and fertilizer inputs are of great significance for ecological protection. In this study, soil samples in the plow layer were collected from greenhouses >100 acres in the eastern Qinghai-Tibet Plateau after different durations of planting time (either ≤ 3, 3-5, 5-10, or 10-20 years) to assess the changing pattern of soil fertility indicators and the potential leaching risk of nitrogen and phosphorus. The results showed that soil organic matter (OM) and total nitrogen (TN) contents in protected agriculture were 17.1 and 1.3 g/kg, respectively, which suggests moderate content levels. Meanwhile, soil alkali-hydrolyzed nitrogen (AN), available phosphorus (Olsen-P), and available potassium (AK) contents were 160.9, 72.0, and 191.2 mg/kg, respectively, which suggests abundant content levels. As the number of planting years increased, the contents of soil OM, TN, AN, and Olsen-P increased significantly, especially after 10 years, with 41.6%, 44.2%, 26.5%, and 67.4% increases, respectively, compared to ≤ 3 years. As seen, Olsen-P had the most marked increase. In contrast, soil AK and pH decreased with planting years, and soil AK after 5 years decreased by 32% compared to ≤ 3 years. Moreover, the soil pH value in 3-5 years decreased by 2.3% compared to that of ≤ 3 years. The leaching risk of soil nitrogen and phosphorus was intensified after 10-20 years, and the probability of leaching was 0.74 and 0.84, respectively. This study indicated that, in protected agriculture, soil OM, AN, and Olsen-P contents improved, accompanied by a high risk of N and P loss, and AK and soil pH values decreased. It is recommended that the input of nitrogen and phosphorus fertilizers should be controlled, and the input of potassium fertilizer should be increased for more than 10 years of facility cultivation. This study provides a scientific basis for the rational fertilization of agricultural facilities. The findings indicate that after facility planting for 10-20 years, soil organic matter, nitrogen, and phosphorus significantly increased, yet the leaching risk of nitrogen and phosphorus increased as well, suggesting that the input of nitrogen and phosphorus fertilizer should be controlled. After 3-5 years of planting, soil AK and pH values decreased significantly, implicating that potassium and organic fertilizer should be supplemented in a timely manner. © 2022 Science Press. All rights reserved.  相似文献   
390.
分析了我国农业面源污染的现状,提出发展有机农业是我国控制农业面源污染的有效途径之一。对有机农业这一全新的农业生产模式进行解析,提出了我国发展有机农业的对策措施。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号