首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   372篇
  免费   39篇
  国内免费   92篇
安全科学   14篇
废物处理   16篇
环保管理   186篇
综合类   139篇
基础理论   98篇
环境理论   1篇
污染及防治   18篇
评价与监测   8篇
社会与环境   21篇
灾害及防治   2篇
  2024年   2篇
  2023年   12篇
  2022年   6篇
  2021年   18篇
  2020年   7篇
  2019年   17篇
  2018年   18篇
  2017年   26篇
  2016年   15篇
  2015年   22篇
  2014年   27篇
  2013年   36篇
  2012年   21篇
  2011年   27篇
  2010年   14篇
  2009年   31篇
  2008年   23篇
  2007年   26篇
  2006年   20篇
  2005年   17篇
  2004年   24篇
  2003年   10篇
  2002年   4篇
  2001年   11篇
  2000年   11篇
  1999年   8篇
  1998年   11篇
  1997年   6篇
  1996年   9篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1991年   1篇
  1990年   2篇
  1988年   3篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1980年   1篇
  1979年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有503条查询结果,搜索用时 93 毫秒
411.
长期施肥对太湖地区水稻土磷素转化的影响   总被引:7,自引:0,他引:7  
对江苏常熟生态站长期施肥条件下的水稻土进行了磷素转化的研究.结果表明,不同施肥处理的土壤全磷(T-P)含量为926~934mgkg-1,只有对照(CK)比本底值下降0.49%,其它施肥处理的T-P含量都比本底值增加14.24%~28.0%,增幅最大的是半数秸秆 磷肥(1/2OM NPK)处理(28.0%),增幅最小的是NPK(氮磷钾)处理(14.24%).增幅最大的1/2OM NPK处理的T-P含量比CK增加28.0%,年平均增加2.9%;增幅最小的NPK处理的T-P含量比CK增加14.8%,年平均增加1.5%.有机磷(Po)占全磷(T-P)的比值小于无机磷(Pi)占全磷的比值,即:Po/T-P(15%~23%)O-P(143~101)>Fe-P(103~54)>Al-P(65~29)>Ca8-P(45~18)>Ca2-P(22~3);1/2OM NPK处理能增加水稻田土壤中的Al-P和Fe-P含量,而施用NPK肥有利于水稻对Al-P和Fe-P的吸收,因为NPK处理的土壤中Al-P和Fe-P含量只比CK大而比其它处理低;施磷肥会增加水稻土中O-P的含量.图3表3参23  相似文献   
412.
Concerns over increased water temperature of the Speed River as it flows through the City of Guelph in Southern Ontario and an observed relationship between summer stream temperatures and low dissolved oxygen levels in the river prompted an investigation into potential stream temperature management practices. Two mechanistic stream temperature models, SNTEMP and CE-QUAL-W2, were applied to the Speed River in order to gauge the effectiveness of various stream temperature management options. Calibrated versions of both models performed well (0.2 degrees C相似文献   
413.
A major humanitarian concern during the continuing crisis in Darfur, Sudan, has been the protection of children, although there has been little in the way of comprehensive analysis to guide intervention. Founded on a situational analysis conducted between October 2005 and March 2006, this paper documents the significant threats to children's well-being directly linked to the political conflict. It demonstrates the role of non-conflict factors in exacerbating these dangers and in promoting additional protection violations, and it uses the 'protective environment' framework (UNICEF Sudan, 2006a) to identify systematic features of the current environment that put children at risk. This framework is shown to provide a coherent basis for assessment and planning, prompting broad, multidisciplinary analysis, concentrating on preventive and protective action, and fostering a systemic approach (rather than placing an undue focus on the discrete needs of 'vulnerable groups'). Constraints on its present utility in emergency settings are also noted.  相似文献   
414.
Abstract: It is common practice in the United States and elsewhere to maintain vegetated filter strips adjacent to streams to retain contaminants in surface runoff. Most research has evaluated contaminant retention in managed agricultural field strips, while relatively few studies have quantified retention in forested filter strips, particularly for dissolved contaminants. Plot‐scale overland flow experiments were conducted to evaluate the efficiency of natural forested filter strips established as streamside management zones (SMZs) for retaining phosphorus (P), atrazine, and picloram transported in runoff. Retention was evaluated for five different slope classes: 1‐2, 5‐7, 10‐12, 15‐17, and 20‐22%; two cover conditions: undisturbed forest floor (O horizon intact) and forest floor removed by raking; and two periods with contrasting soil moisture conditions: summer‐dry and winter‐wet season. Surface flow was collected at 0, 2, 4, 6, and 10 m within the filter strip to evaluate changes in solution concentration as it moved through the O horizon and the surface soil horizon mixing zone. On average, a 10 m length of forested SMZ with an undisturbed forest floor reduced initial solution concentration of total dissolved P by 51%, orthophosphate P by 49%, atrazine by 28%, and picloram by 5%. Percentages of mass retention through infiltration of water plus concentration reductions in runoff were 64% for total dissolved P, 62% for orthophosphate P, 47% for atrazine, and 28% for picloram for undisturbed forest floor conditions. Lower retention occurred following forest floor removal, particularly for P. Average dissolved P retention was 16% lower following forest floor removal. For undisturbed sites, differences in retention were more closely related to forest floor depth than to slope or antecedent soil moisture. These results indicate that forested SMZ filter strips provide a significant measure of surface water protection from dissolved P and herbicide delivery to surface water.  相似文献   
415.
Abstract: Determining watershed response to vegetation treatment has been the subject of numerous hydrologic studies over the years. However, generalizing the information obtained from traditional paired‐watershed studies to other watersheds in a region is problematic because of the empirical nature of such studies and the context dependence of hydrologic responses. This paper addresses the issue of generalizing hydrologic information through integration of process‐based modeling and field observations from small‐scale watershed experiments. To this end, the results from application of a process‐based model were compared with the results from small‐scale watershed experiments in ponderosa pine forests of Arizona. The model simulated treatment impacts reasonably well when compared to the traditional paired‐watershed approach. However, the model tended to overestimate water yields during periods of low flow, and there was a significant difference between the two approaches in the estimation of treatment impacts during the first four years following treatment. The results indicate that the lumped‐parameter modeling approach used here may be limited in its ability to detect small changes, and tends to overestimate changes that occur immediately following treatment. It is concluded that watershed experiments can be highly informative due to their direct examination of cause‐effect relationships, while process‐based models are useful for their processing power and focus on functional relationships. The integrated use of both watershed experiments and process‐based models provides a way to generalize hydrologic information, illuminate the processes behind landscape treatment effects, and to generate and test hypotheses.  相似文献   
416.
Abstract: Total Maximum Daily Load (TMDL) implementation generates benefits and costs from water quality improvements, which are rarely quantified. This analysis examines a TMDL written to address bacteria and aquatic‐life‐use impairments on Abrams and Opequon Creeks in Virginia. Benefits were estimated using a contingent valuation survey of local residents. Costs were based on the number and type of best management practices (BMPs) necessary to achieve TMDL pollution reduction goals. BMPs were quantified using watershed‐scale water quality simulation models (Generalized Watershed Loading Function and Hydrological Simulation Program‐FORTRAN). Based on our projections, the costs to achieve TMDL induced pollution reduction goals outweigh the estimated benefits. Benefit‐cost ratios ranged between 0.1 and 0.3.  相似文献   
417.
Phosphorus export coefficients (kg/ha/yr) from selected land covers, also called phosphorus yields, tend to get smaller as contributing areas get larger because some of the phosphorus mobilized on local fields gets trapped during transport to regional watershed outlets. Phosphorus traps include floodplains, wetlands, and lakes, which can then become impaired by eutrophication. The Sunrise River watershed in east central Minnesota, United States, has numerous lakes impaired by excess phosphorus. The Sunrise is tributary to the St. Croix River, whose much larger watershed is terminated by Lake St. Croix, also impaired by excess phosphorus. To support management of these impairments at both local and regional scales, a Soil and Water Assessment Tool (SWAT) model of the Sunrise watershed was constructed to estimate load reductions due to selected best management practices (BMPs) and to determine how phosphorus export coefficients scaled with contributing area. In this study, agricultural BMPs, including vegetated filter strips, grassed waterways, and reduction of soil‐phosphorus concentrations reduced phosphorus loads by 4‐20%, with similar percentage reductions at field and watershed spatial scales. Phosphorus export coefficients from cropland in rotation with corn, soybeans, and alfalfa decreased as a negative power function of contributing area, from an average of 2.12 kg/ha/yr at the upland field scale (~0.6 km2) to 0.63 kg/ha/yr at the major river basin scale (20,000 km2). Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   
418.
We present the results of a replicated before‐after‐control‐impact study on 33 streams to test the effectiveness of riparian rules for private and State forests at meeting temperature criteria in streams in western Oregon. Many states have established regulatory temperature thresholds, referred to as numeric criteria, to protect cold‐water fishes such as salmon and trout. We examined across‐year and within‐year patterns of exceedance at control and treatment stream temperature probes. Determining whether an exceedance at the downstream end of a harvest was unambiguously related to harvest proved surprisingly difficult. The likelihood of a site exceeding its numeric criterion appeared related, in part, to the site's preharvest temperature range. Four control reaches as well as three preharvest treatment reaches exceeded their numeric criteria, necessitating additional analysis to evaluate timber harvest impacts. Nine percent of sites (3 of 33) both exceeded their numeric criteria and exhibited a potential harvest effect (16.7% of private sites [3 of 18], 0% of State sites [0 of 15]). After harvest, exceedances were typically observed in only the first of the two post‐harvest years. These findings highlight the importance of including temporal and spatial controls in temperature assessments of numeric criteria when the assessment's purpose is to determine whether exceedances are related to human activities.  相似文献   
419.
In mountainous landscapes with high climatic and geomorphic variability, how do rural land uses and exurbanization alter hydrology and water quality? We evaluated effects of rural land use and exurbanization on streamflows, suspended sediment concentrations and loads, specific conductance, and summer water temperatures in 12 streams and rivers within the Upper Little Tennessee River basin in the southern Appalachian Mountains. Eleven streams featured low levels of development (>61% forest cover) but differed in land use patterning, basin size, annual precipitation, and watershed morphology. One urban stream, located within the largest town in the basin, provided the high development comparative endpoint. Even low levels of rural development and exurbanization were associated with substantial increases in suspended sediment concentrations, sediment loads, and summer stream temperature daily maxima and diurnal variation. Observed summer temperature increases were much larger than would be expected due to global climate change over the next century. Specific conductance was idiosyncratic among the smaller streams. These water quality changes were not accompanied by streamflow changes that were discernible amid the high natural variation in precipitation and geomorphology. The water quality findings suggest the need for applying the best management practices, including riparian buffers, to even low levels of rural development.  相似文献   
420.
The proper representation of conservation practices on agricultural lands is an important factor in large‐scale assessments of water quality in the United States. Unfortunately, there are few publicly available data sources at the local level and even fewer at the national scale. In this research, randomly selected points within agricultural lands were examined for selected conservation practices using Google Earth aerial imagery by a team of interpreters. In total, 13,530 points had field boundaries digitized, and were subsequently examined and classified. The presence of terraces, grassed waterways, contour farming, center pivot irrigation, strip cropping, ponds, riparian vegetation, filter strips, and land cover were noted. Subjectivity among interpreters was evaluated using duplicate samples and was found to be similar to image misclassification rates in other research. Conservation practice adoption rates for selected major river basins compared favorably with data collected by the Conservation Effects Assessment Project. The frequency of occurrence of each conservation practice was summarized and presented by ecoregion. To facilitate future research, point level data and software source code developed in this research are available via the web at http://nlet.brc.tamus.edu/Conservation . Aerial imagery was found to be a powerful, inexpensive, and easily accessible tool to assess large‐scale conservation practice implementation for certain conservation practices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号