首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1680篇
  免费   180篇
  国内免费   1001篇
安全科学   227篇
废物处理   133篇
环保管理   187篇
综合类   1587篇
基础理论   131篇
污染及防治   551篇
评价与监测   37篇
社会与环境   6篇
灾害及防治   2篇
  2024年   1篇
  2023年   20篇
  2022年   32篇
  2021年   36篇
  2020年   51篇
  2019年   61篇
  2018年   60篇
  2017年   56篇
  2016年   84篇
  2015年   106篇
  2014年   151篇
  2013年   160篇
  2012年   216篇
  2011年   188篇
  2010年   158篇
  2009年   171篇
  2008年   119篇
  2007年   215篇
  2006年   197篇
  2005年   142篇
  2004年   116篇
  2003年   116篇
  2002年   81篇
  2001年   77篇
  2000年   63篇
  1999年   43篇
  1998年   28篇
  1997年   28篇
  1996年   26篇
  1995年   14篇
  1994年   12篇
  1993年   12篇
  1992年   6篇
  1991年   2篇
  1990年   3篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1979年   1篇
  1972年   1篇
排序方式: 共有2861条查询结果,搜索用时 406 毫秒
631.
投加Fe3O4能够在一定程度上强化有机物的厌氧降解过程,而进水有机负荷是影响厌氧系统处理效率的重要因素.本研究通过分阶段提升进水有机负荷,对比考察了Fe3O4的加入对UASB厌氧反应器运行效能及污泥性质的影响.结果表明,当有机负荷低于3.2 kg·m-3·d-1时,两反应器内有机物厌氧水解效率并无显著性差别.而当有机负荷提升至6.4、12.8、25.6 kg·m-3·d-1时,Fe3O4对有机物厌氧水解效率表现出一定的促进效果,且有机负荷越高,Fe3O4对厌氧水解的促进效果越显著.与此同时,Fe3O4对厌氧产甲烷过程也表现出明显的促进作用,在有机负荷分别为1.6、3.2、6.4、12.8、25.6 kg·m-3·d-1时,添加Fe3O4的反应器中平均甲烷产率分别为对照组的3.55、2.37、1.26、1.16和1.06倍.这一现象表明Fe3O4对产甲烷过程的促进效果与有机负荷密切相关,且有机负荷越低,Fe3O4对厌氧产甲烷效率的增强作用越明显.此外,本研究还分析了运行过程中污泥粒径和胞外聚合物的变化,发现Fe3O4的加入可以有效促进厌氧污泥颗粒化进程.  相似文献   
632.
为高效处理玉米淀粉生产废水,启动并持续运行了一个四格室厌氧折流板反应器(ABR),通过分阶段提升进水COD的方法,探讨了有机负荷率(OLR)对ABR运行效能的影响,并采用间歇培养方式考察了OLR对沿程格室中不同营养类型产甲烷菌群活性的影响.结果表明,在OLR分阶段从2.7提高到8.0 kg·m-3·d-1的过程中,ABR前两个格室(C1和C2)始终呈现出典型的产酸发酵特征,其污泥的有机挥发酸(VFAs)比产率为0.54~0.76 kg·kg-1·d-1(以每天每千克MLVSS产出的1千克有机挥发酸计,下同),而后两个格室(C3和C4)则表现出典型的产甲烷特征,其污泥的比产甲烷速率达98 L·kg-1·d-1(以每天每千克MLVSS产出的1升甲烷计,下同)以上.活性污泥产甲烷活性测试结果表明,当OLR为2.7~8.0 kg·m-3·d-1时,C3中的氢营养型产甲烷菌群保持了较高的产甲烷活性,其最大甲烷产量(Pmax)和最大比产甲烷速率分别达到了20.4 mL和16.5 mL·g-1·h-1(以每小时每克MLVSS产出的1毫升甲烷计,下同)以上.乙酸营养型产甲烷菌群的累计甲烷产量由大到小依次为:C3 > C4 > C1 > C2.经过144 h的培养后,C3中乙酸营养型产甲烷菌群的累计甲烷产量为15.1~15.2 mL,最大比产甲烷速率为10.0~10.8 mL·g-1·h-1.  相似文献   
633.
利用正己烷降解菌Pseudomonas mendocina NX-1和二氯甲烷(DCM)降解菌Methylobacterium rhodesianum H13强化生物滴滤塔(BTF)同时净化不同疏水性的正己烷和DCM混合废气,研究了挂膜启动阶段及稳定运行阶段BTF对污染物的去除性能与限制因素及生物膜相的特性变化.结果表明,在正己烷和DCM浓度均为100 mg·m-3,停留时间(EBRT)为60 s的条件下,运行25 d即可完成BTF的启动,正己烷和DCM的去除率分别可达到65%和100%.系统稳定运行时,正己烷和DCM的最大去除负荷分别为16.1 g·m-3·h-1和92.0 g·m-3·h-1.正己烷和DCM的去除过程分别受到传质限制与反应限制影响.BTF稳定运行后,塔内生物膜胞外聚合物(EPS)中蛋白质(PN)含量逐渐增加至启动时的2.7倍,蛋白质与多糖的比值(PN/PS)从0.28增加至0.96.生物膜表面相对疏水性从21%增加至66%,Zeta电位从-12.7 mV降低至-9.2 mV.压降的模拟结果与实验数据良好拟合(R2>0.96).  相似文献   
634.
21世纪被誉为氢能世纪.光发酵制氢作为绿色可持续生物制氢方式的一种,可以利用独特的光合系统固定太阳能,并利用有机物产生清洁能源氢气,因而受到广泛关注.但光发酵细菌凝集力差、底物转化效率和光能利用率低导致产氢效能下降,从而阻碍了光发酵制氢的发展.光发酵细菌可以通过形成生物膜而被有效固定,进而增加反应器内光发酵细菌的生物持有量,提高光发酵细菌对不利环境的抵抗力;同时,光发酵细菌形成生物膜后可以调控产氢细菌新陈代谢和生理活性使其更利于产氢.其中,光发酵生物膜反应器的设计尤为重要,尤其是反应器内光源的均匀分配对于光发酵制氢是一项关键因素,需要对光源设计、空间摆放和遮光性进行综合分析和设计;其次,需要考虑载体性质和载体安装以充分吸附光发酵细菌并形成生物膜;同时,结合未来可持续绿色发展的需求,光发酵生物膜反应器设计需要逐步过渡到以室外环境作为常规环境和太阳作为光源.尽管光发酵生物膜制氢前景良好,但目前对于光发酵生物膜反应器和制氢机制的研究仍然不够充分,需要更加深入地探索和优化以突破光发酵制氢的瓶颈,推动氢能行业的发展.  相似文献   
635.
采用中试ASBR反应器(530 L),以逐步提高Cl~-浓度的方式考察了厌氧氨氧化菌(An AOB)处理高盐废水的脱氮特性.结果表明,采用逐步盐度驯化的方式,An AOB可适应高盐度(Cl~-浓度10 000 mg·L~(-1))环境进行高效脱氮(TN去除率高达92. 3%).其中,在Cl~-浓度6 000 mg·L~(-1)和10 000 mg·L~(-1)两个梯度内,反应器脱氮性能受到了较大影响,但随着驯化过程的持续进行可逐步恢复.修正的Boltzmann模型能较为准确地拟合An AOB受到不同盐度抑制后的活性恢复过程,相关系数R~2均在0. 96以上.得到的Cl~-浓度6 000 mg·L~(-1)和10 000 mg·L~(-1)时的恢复中间值tc分别为28. 765 d和44. 495 d,NRRmax分别为0. 145 kg·(m~3·d)~(-1)和0. 212 kg·(m~3·d)~(-1),NRRmin分别为0. 021 kg·(m~3·d)~(-1)和0. 085 kg·(m~3·d)~(-1).高盐度驯化后,厌氧氨氧化菌仍主要为Candidatus Brocadia和Candidatus Jettenia(其丰度分别是14. 76%和2. 7%),且污泥颗粒化程度和污泥密度均有不同程度的提高,污泥呈红褐色.  相似文献   
636.
对添加表面活性剂鼠李糖脂后生物滴滤塔(BTF)去除乙苯废气的效能及滴滤塔中微生物16S r DNA高通量测序结果进行分析,探讨了鼠李糖脂对生物滴滤塔处理有机废气效能的影响机理.结果发现:鼠李糖脂在浓度为21.6 mg·L~(-1)时对微生物生长的促进作用尤为明显,BTF2(添加鼠李糖脂)和BTF1(对照)在挂膜启动期间生物量都呈现出逐渐增加的趋势,添加鼠李糖脂的BTF2在第35 d时生物量比BTF1增加了39.62 mg·g-1.BTF2的挂膜启动时间比BTF1缩短了5 d,并且系统挂膜稳定后对乙苯废气的去除率提高了12%.BTF1和BTF2的微生物群落组成基本相同,主要优势菌群是变形杆菌门.在BTF1系统中,变形杆菌门占62.3%;在BTF2系统中,变形杆菌门占81.9%.在属水平上,BTF1下层系统的主要优势菌属占45.7%,在BTF2下层系统主要优势菌属占73.4%.研究表明,在BTF系统中添加鼠李糖脂可以促进优势菌的富集生长,缩短系统启动挂膜时间,强化BTF系统对乙苯的降解,并提高BTF的去除效率和稳定性.  相似文献   
637.
通过接种亚硝化与厌氧氨氧化污泥,以无机高氨氮(110~130mg/L)废水为对象,研究上流式双层填料反应器的启动与运行.反应器上层与下层分别以沸石和聚氨酯海绵作为填料,启动两种填料高度比分别为2:3和3:2的1号和2号反应器,历时139d成功建立自养脱氮系统.结果表明,1号反应器最高总氮去除率达84.4%,2号最高总氮去除率达81.8%,总氮去除负荷分别达0.15,0.14kgN/(m3·d).进水未添加有机碳源时,2号△NO3--N/△NH4+-N一直稳定在特征值0.11附近,自养脱氮系统更为稳定.在添加有机碳源情况下,2个反应器总氮去除率都得到提升,△NO3--N/△NH4+-N也更为稳定.说明一定浓度的有机物能强化系统稳定运行,提高系统脱氮性能.反冲洗稳定后,1号反应器出水NO3--N由未反冲洗前的17.61mg/L降低到10mg/L以下,说明适当的反冲洗可以有效恢复反应器运行,反冲洗与NOB抑制手段相结合能更好地维持反应器的长期稳定运行.  相似文献   
638.
中试SAD-ASBR系统处理含盐废水的启动与工艺特性   总被引:2,自引:2,他引:0  
采用ASBR(530 L)接种A~2/O厌氧污泥,考察了厌氧氨氧化(ANAMMOX)的启动及其与反硝化耦合处理含盐废水的脱氮特性,并对菌群结构进行了分析.结果表明,温度35℃±1℃、反应时间为14 h,160 d可实现ANAMMOX的成功启动.稳定运行阶段,ANAMMOX与反硝化耦合(SAD)使得总氮(TN)去除率和去除负荷分别达91.1%和0.45 kg·(m~3·d)~(-1);污泥呈浅红色颗粒状,厌氧氨氧化菌为优势菌,且主要菌属为Candidatus Brocadia(10.6%).此外,采用按梯度逐步提高盐度的驯化方式,可实现SAD对高盐(Cl-浓度8 000 mg·L-1)模拟火电厂废水的高效脱氮除碳,COD和TN去除率分别达93.2%和90.0%.推测SAD中反硝化主要为NO_3~--N→N_2,部分反硝化(NO_3~--N→NO_2~--N)仅占30.3%.  相似文献   
639.
针对含NO3--N与较高浓度SO42-实际工业废水处理较难的问题,考察了不同水力停留时间(HRT)下连续运行的CO2-氢基质膜生物膜反应器(CO2-MBfR)处理模拟废水和实际工业废水的性能,结果表明,2种废水的出水NO3--N浓度均随着HRT的减小而增大,模拟废水中NO3--N的处理效果和电子通量分配比例均优于实际废水,但其电子通量分配的格局基本不变:NO3--N和SO42-的电子通量分别在90.09%~97.49%和2.51%~9.91%左右.要实现实际废水总氮达到15mg/L的排放标准,需维持HRT不少于10.4h.  相似文献   
640.
A dynamic model for nitrifying trickling filters is developed, based on material balances in the biofilm and the bulk liquid. The model predicts the profile of ammonia as a function of the operating parameters (volumetric flow rate and feed ammonia concentration) and the biofilm thickness as a function of filter depth and time. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号