首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   488篇
  免费   51篇
  国内免费   254篇
安全科学   62篇
废物处理   35篇
环保管理   97篇
综合类   402篇
基础理论   65篇
环境理论   1篇
污染及防治   89篇
评价与监测   16篇
社会与环境   23篇
灾害及防治   3篇
  2024年   3篇
  2023年   5篇
  2022年   17篇
  2021年   22篇
  2020年   21篇
  2019年   30篇
  2018年   44篇
  2017年   36篇
  2016年   48篇
  2015年   39篇
  2014年   62篇
  2013年   60篇
  2012年   55篇
  2011年   42篇
  2010年   37篇
  2009年   51篇
  2008年   31篇
  2007年   25篇
  2006年   32篇
  2005年   23篇
  2004年   10篇
  2003年   24篇
  2002年   12篇
  2001年   12篇
  2000年   13篇
  1999年   7篇
  1998年   8篇
  1997年   3篇
  1996年   5篇
  1995年   3篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1985年   1篇
  1984年   1篇
  1979年   1篇
排序方式: 共有793条查询结果,搜索用时 484 毫秒
791.
郭坤  李顶杰  李浩然  杜竹玮 《环境科学》2009,30(10):3082-3088
用夹子将质子交换膜和载铂量为0.2 mg/cm2碳纸固定在阳极室的短臂端口构成短臂型空气阴极微生物燃料电池.利用污泥电池从厌氧消化污泥中富集产电菌于石墨棒表面,循环伏安法检测发现这些微生物具有电化学活性.将富集好的石墨棒作为阳极用于短臂型空气阴极微生物燃料电池,以醋酸钠为底物时该电池的最大功率密度为738 mW/m2,内阻为280Ω,开路电压为741 mV.连续向阳极室通氮气和去掉质子交换膜可分别将电池的最大功率密度提高到745 mW/m2和759 mW/m2,当两者同时作用时最大功率密度可达到922 mW/m2,而这3种条件下电池的内阻仍保持在280Ω左右.当底物浓度在12.62~100.96 mg/L、外电阻为510Ω时,电池的最大输出电压和底物浓度之间存在明显的线性关系(R2=0.99).当底物浓度高于100.96 mg/L时,电池的最大输出电压不再增大并保持在302 mV(外电阻为510Ω).然而,电池的库仑效率则随着底物浓度的提高而提高,从31.83%逐渐增大到45.03%.  相似文献   
792.
硝酸-PPy/AQDS联合处理改善阳极性能的分析表征   总被引:1,自引:1,他引:1  
阳极性能是影响微生物燃料电池(microbial fuel cells,MFCs)性能的关键因素之一.通过吡咯聚合、蒽醌-2,6-磺酸钠盐(AQDS)掺杂以及库仑量调控将不同厚度的PPy/AQDS复合薄膜电沉积至硝酸处理的碳毡阳极上,以期整合碳毡阳极的生物亲合性、导电性及电子传递能力,同时强化阳极的这3种性能.结果表明,随着整合强度的加强,阳极性能逐步得到提升,整合阳极在阳极生物量、电导率以及交换电流密度方面优于对照组2.4~3.3倍,其中0.12 C·cm~(-2)的整合阳极表现出最高的峰值电流(2.86 m A)、最大的阳极生物量(0.44 mg·cm-2)、最大的电导率(0.33 S·cm~(-1))、最大的交换电流密度(3.65×10~(-3)A·m~(-2))以及最小的传质阻力,其对应MFC的最大功率密度达1 060.7 m W·m~(-2),是对照组的2.2倍,阳极开路电势接近-0.55V.循环伏安、电化学阻抗谱、扫描电镜和塔菲尔测试进一步揭示了PPy/AQDS复合薄膜在阳极碳纤维之间的联接、架桥作用,使得不同纤维丝之间的接触更加均匀,减小了电子在生物膜与阳极之间、阳极与外回路之间的传递阻力;同时,沉积于碳毡阳极的PPy/AQDS复合薄膜与硝酸处理后阳极表面形成的吡咯氮类官能团之间的协同作用可能是整合阳极性能提升的本质原因所在.  相似文献   
793.
低成本、高产量的发酵工艺是实现工业燃料乙醇经济和环境可持续性发展的关键,而不需要重大基础设施改变或投资.为获得酿酒酵母(Saccharomyces cerevisiae)利用甘蔗汁生产燃料乙醇的最优发酵工艺,首先对发酵体系的氮源条件进行优化;其次,在单因素试验基础上,以乙醇发酵效率为响应值,通过响应面法优化了燃料乙醇生产的发酵工艺,并通过补料分批发酵技术在5 L发酵罐中进一步扩大发酵.结果表明,以1.0 g/L (NH)SO和1.0 g/L酵母提取物作为发酵氮源,乙醇发酵效率和得率比对照可分别提高4.80%、9.52%.响应面设计获得的最优发酵工艺条件为在总糖浓度150.0 g/L、酵母提取物浓度2.0 g/L、发酵时间24.5 h、pH5.0、外加(NH)SO浓度1.0 g/L时,最高乙醇发酵效率可达到91.10%.在5 L发酵罐中采用补料分批发酵获得的最终乙醇浓度达到98.92 g/L,发酵效率维持在90%左右,乙醇生产力最高达到3.81 g Lh.本研究获得了一种高效生产糖质燃料乙醇的发酵工艺,可在较短时间内获得高浓度乙醇且消耗较少氮源,结果可为进一步利用糖质原料进行高效生物炼制及高浓度乙醇工业化生产提供参考.(图6表6参30)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号