首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   690篇
  免费   73篇
  国内免费   192篇
安全科学   72篇
废物处理   5篇
环保管理   60篇
综合类   529篇
基础理论   31篇
污染及防治   15篇
评价与监测   105篇
社会与环境   28篇
灾害及防治   110篇
  2024年   2篇
  2023年   13篇
  2022年   20篇
  2021年   32篇
  2020年   32篇
  2019年   31篇
  2018年   32篇
  2017年   55篇
  2016年   61篇
  2015年   67篇
  2014年   55篇
  2013年   49篇
  2012年   64篇
  2011年   45篇
  2010年   45篇
  2009年   37篇
  2008年   22篇
  2007年   35篇
  2006年   57篇
  2005年   30篇
  2004年   17篇
  2003年   25篇
  2002年   23篇
  2001年   20篇
  2000年   20篇
  1999年   9篇
  1998年   5篇
  1997年   8篇
  1996年   16篇
  1995年   9篇
  1994年   6篇
  1993年   1篇
  1992年   5篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
排序方式: 共有955条查询结果,搜索用时 467 毫秒
211.
The current study improves streamflow forecast lead‐time by coupling climate information in a data‐driven modeling framework. The spatial–temporal correlation between streamflow and oceanic–atmospheric variability represented by sea surface temperature (SST), 500‐mbar geopotential height (Z500), 500‐mbar specific humidity (SH500), and 500‐mbar east–west wind (U500) of the Pacific and the Atlantic Ocean is obtained through singular value decomposition (SVD). SVD significant regions are weighted using a nonparametric method and utilized as input in a support vector machine (SVM) framework. The Upper Rio Grande River Basin (URGRB) is selected to test the applicability of the proposed model for the period of 1965–2014. The April–August streamflow volume is forecasted using previous year climate variability, creating a lagged relationship of 1–13 months. SVD results showed the streamflow variability was better explained by SST and U500 as compared to Z500 and SH500. The SVM model showed satisfactory forecasting ability with best results achieved using a one‐month lead to forecast the following four‐month period. Overall, the SVM results showed excellent predictive ability with average correlation coefficient of 0.89 and Nash–Sutcliffe efficiency of 0.79. This study contributes toward identifying new SVD significant regions and improving streamflow forecast lead‐time of the URGRB.  相似文献   
212.
为提升PM2.5浓度预报能力,尤其是对PM2.5重污染的预报能力,以中尺度气象-化学耦合模式系统(WRF-Chem)为基础,结合中尺度WRF气象预报数据、地面及高空气象观测数据、PM2.5浓度观测数据,基于人工智能深度学习序列到序列的算法建立了上海市PM2.5统计预报模型.结果表明,人工智能深度学习算法(Seq2seq)明显修正了WRF-Chem模式由于模型非客观性造成的偏差,提高了上海市PM2.5浓度的预报能力;该算法优化和修正了WRF-Chem模式结果,并通过检验发现可以使PM2.5浓度预报值与实况值间的相关系数由0.51上升至0.79,均方根误差由25.9μg/m3下降至15.01μg/m3.而单独使用套索法(Lasso)线性回归算法对WRF-Chem模式优化效果不理想.基于Seq2seq的PM2.5浓度预报修正模型能够有效提升预报精度.  相似文献   
213.
基于灰色系统理论的济南市建筑废物产量预测   总被引:1,自引:0,他引:1  
袁剑  曾现来  陈明 《中国环境科学》2020,40(9):3894-3902
首先以建筑面积核算法对济南市2000~2017年建筑废物产量进行了估算,然后以估算值作为原始数据,建立了灰色GM(1,1)预测模型.最后对未来5a济南市建筑废物产量进行了预测.经验证,模型精度等级达到优秀级.结果表明,灰色GM(1,1)预测模型可以准确地预测济南市建筑废物的年产量,预测表明济南市建筑废物平均产量将从2018年的860万t,增加到2022年的1000万t.  相似文献   
214.
目的为模拟海洋工程与水下科考装备电池的真实使用情况,进行随机电流放电下的锂离子电池老化实验,通过高斯过程回归模型进行电池剩余寿命预测。方法从数据驱动方法中选取具备不确定性表达能力的高斯过程回归模型,选定核函数后通过训练数据来优化超参数建立预测模型。用随机应用下的电池充放电循环实验数据验证预测结果。结果与SE核函数相比,基于Matern核函数的模型预测效果更优。训练数据越多,预测起始点越大,模型预测绝对误差越小、MAPE与RMSE值更低。对两种不同实验温度、不同随机电流放电模式下的三组电池,模型预测绝对误差大多在40 cycle内,MAPE与RMSE值分别低于0.06、0.09,均能实现准确剩余寿命预测。结论对于随机应用下的锂离子电池剩余寿命预测,高斯过程回归模型具备高精度与适用性。  相似文献   
215.
统计分析2014~2017年北京城区霾污染发生情况,利用HYSPLIT模式对4年内气流来向进行聚类计算,识别区域内的主要污染传输通道和潜在污染源区分布及变化.结果显示,研究期间北京市城区空气质量状况整体呈改善趋势,灰霾时发生率从2014年的50.6%降至2017年33.7%,灰霾日数由165d降至78d,每年10月到次年采暖结束的3月灰霾发生较为集中.不同强度霾发生频率逐年下降,秋、冬季灰霾发生频率及污染强度均逐步降低.冀东南平原区、太行山东麓以及燕山南麓沿线为京津冀地区的3条主要污染传输通道,传输高度均在近地1000m内,期间通道轨迹对应北京城区PM2.5平均达124.1μg/m3,其出现频率在2014~2017年逐年减小,并且各年当中同类轨迹所对应的北京PM2.5均呈逐年下降趋势.北京城区PM2.5的主要潜在源区从华北平原和渤海天津港区域逐渐缩小至冀中南和鲁西北地区,且传输通道区域污染贡献率逐年降低,有利的天气形势和人为的区域减排是近年空气质量改善的2大主因.  相似文献   
216.
通过实验模拟巷道生产作业环境,分析了矿井生产环境下光照衰减的机理,研究了普通LED灯、金卤灯、荧光灯、头戴LED矿灯4种灯具在不同环境参数下的透射性,得出其在不同矿井因素(粉尘浓度、风速、相对湿度)下光的透过性影响规律,结果表明:在矿井中风速和相对湿度的增加均能降低光的透过率,相对湿度变化对光的透过率影响较大,且风速和相对湿度的增加对粉尘浓度有一定的积聚作用。研究结果为井下照明灯具的合理选用提供了依据。  相似文献   
217.
李祥  彭玲  邵静  崔绍龙  田海峰 《环境工程》2016,34(8):110-113
细颗粒物PM2.5为首要污染物的空气污染严重影响了公众健康,对空气污染进行有效预报具有十分重要的意义。而目前常用的空气污染物浓度预报方法在短时事件和意外事件预测方面存在不足。利用小波多尺度分析方法改进ARMA预测模型,并将其应用于短时空气污染物浓度预测。改进模型通过小波分解方法将时间序列分解为一个近似序列和多个细节序列,分别采用ARMA模型进行预测,然后将各序列预测结果进行重构,得到最终预测结果。以天津市2014年PM2.5浓度数据为例,分别采用ARMA模型、支持向量回归(SVR)模型、人工神经网络(ANN)模型以及基于小波多尺度分解改进的SVR模型和基于小波多尺度分解改进的ARMA模型进行了对比分析。结果表明:1)小波多尺度分解能够显著提高SVR模型和ARMA模型预报精度;2)ARMA、SVR、ANN等传统模型在重污染情况下预报精度显著下降,而小波分解改进策略能够较好地解决这个问题;3)基于小波多尺度分解改进的ARMA模型预报精度较高,是城市污染物浓度预报的有效手段。  相似文献   
218.
利用四川156个气象观测站1981-2014年霾日观测资料,对区域内不同强度霾日的时空分布特征及变化趋势进行分析.结果发现:不同强度霾日数呈现轻霾和重霾显著上升、中霾下降的趋势,20世纪90年代后霾日整体偏多,其中,秋、冬季发生频率偏高,12月和1月是多发时段;不同强度年均霾日高值区集中在盆地中部、东部地区,低值区主要位于盆地西南地区,并呈现盆地中北部霾日逐年减少,盆地南部逐年增多的变化趋势.结合季节特征探讨霾日形成机理发现,春、夏季欧亚中高纬度呈现两槽一脊的环流形势,印缅槽较强,利于降水,盆地相对湿度为85%以上,高原东侧上升气流较明显,大气对流层中下层为"上冷下暖"的递减层结,利于大气污染排放物垂直交换及其对外扩散;秋、冬季高纬度以纬向环流为主,经向环流偏弱,冷空气被阻挡在盆地以北以西区域,盆地东部为下沉气流,850 hPa以下的偏东气流使东部污染物向西蔓延,青藏高原以东地区上空为显著的"上暖下冷"逆温层结,相对湿度为80%左右,地面气温增加,相对湿度下降,使霾不易向雾转换,加重霾日高频状况的发生.  相似文献   
219.
以2006年中国地区的INTEX-B排放清单为基础,采用CMAQ模式污染源同化方法,反演更新了2013年1月重霾污染过程华北地区的SO2和NOx排放源;应用WRF-CMAQ模式以及2006年INTEX-B初始排放源和2013年1月改进的排放源,分别模拟了1月9-15日和28-31日两次持续重霾污染过程的SO2和NO2浓度,并与华北地区47个环境监测站点实测值进行对比,重点分析了基于初始源和同化反演源的模拟效果及其改进原因;本文亦采用2012年清华大学编制的东亚地区MEIC排放清单评估了SO2和NOx同化反演源的合理性.分析结果表明:①CMAQ模式污染源同化方法可适用于重霾污染过程,即采用同化反演源模拟的SO2、NO2浓度时空变化特征与实测值较一致,而且可反映SO2、NOx排放源强的动态变化特征;②基于同化反演源的SO2、NO2浓度模拟效果明显优于2006年INTEX-B排放源,其时间变化趋势与实测值较一致,而且可模拟重霾污染过程SO2、NO2浓度的峰值;③采用反演源模拟的SO2、NO2浓度空间区分布特征与实测值较一致,而且可较好反映重污染区的极值分布特征;④经污染源同化改进后SO2、NO2模拟浓度与实测值的相关系数有所提高,误差明显减小;SO2的改进效果略优于NO2,这与污染源对两种污染物浓度的影响差异有关;⑤初始源中SO2、NOx排放源的空间分布和强度与2012年清华大学编制的排放源强差异较大,而同化反演源的空间分布和强度均接近于上述2012年排放源,较好反映出重点地区的高污染源分布特征.本文研究结果将为改进重霾污染过程的空气质量预报、减小自下而上建立的排放源清单不确定性、评估SO2、NOx等排放源的影响效应以及不同气象条件下区域排放源的动态调控等提供新技术途径和研究思路.  相似文献   
220.
珠三角冬季PM2.5重污染区域输送特征数值模拟研究   总被引:4,自引:2,他引:2  
利用嵌套网格空气质量模式系统(NAQPMS)及其耦合的污染来源追踪模块,针对2013年1月珠三角区域的PM_(2.5)重污染过程输送特征进行了数值模拟研究.结果表明,污染气团首先形成于广州、佛山地区,并在弱偏北风的作用下南移加强,影响整个珠三角区域.重污染期间,广州(64.9%)、佛山(58.9%)的PM_(2.5)主要来自本地贡献,是区域输送最主要的来源地区;中山(51.9%)、珠海(66.2%)的PM_(2.5)主要来自外来贡献,是区域输送主要的受体地区.重污染期间,广州和佛山对中山的PM_(2.5)日均贡献率之和总体保持在25%以上,污染最重时达到40%.交通(26%)、工业(24%)、扬尘(16%)、火力发电(15%)和生物质燃烧(8%)是对中山贡献最大的5类源:工业源中山本地与外来输送贡献率基本相当;交通和扬尘源以中山本地贡献为主,贡献率分别为55%和67%;火力发电和生物质燃烧源以外来输送为主,贡献率分别为56%和62%.各类排放源的外来输送中,以广州、佛山所占的比例最大.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号