首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   923篇
  免费   95篇
  国内免费   165篇
安全科学   1篇
废物处理   2篇
环保管理   621篇
综合类   354篇
基础理论   69篇
污染及防治   12篇
评价与监测   55篇
社会与环境   62篇
灾害及防治   7篇
  2024年   4篇
  2023年   11篇
  2022年   14篇
  2021年   27篇
  2020年   26篇
  2019年   34篇
  2018年   15篇
  2017年   34篇
  2016年   36篇
  2015年   52篇
  2014年   27篇
  2013年   63篇
  2012年   62篇
  2011年   51篇
  2010年   42篇
  2009年   54篇
  2008年   39篇
  2007年   43篇
  2006年   68篇
  2005年   48篇
  2004年   44篇
  2003年   54篇
  2002年   56篇
  2001年   30篇
  2000年   38篇
  1999年   26篇
  1998年   21篇
  1997年   19篇
  1996年   13篇
  1995年   16篇
  1994年   9篇
  1993年   7篇
  1992年   7篇
  1991年   6篇
  1990年   9篇
  1989年   6篇
  1988年   6篇
  1987年   8篇
  1984年   5篇
  1983年   7篇
  1982年   5篇
  1981年   3篇
  1980年   6篇
  1979年   4篇
  1977年   4篇
  1976年   2篇
  1975年   4篇
  1974年   6篇
  1971年   4篇
  1970年   2篇
排序方式: 共有1183条查询结果,搜索用时 312 毫秒
991.
ABSTRACT: An extensive group of datasets was analyzed to examine factors affecting widths of streams and rivers. Results indicate that vegetative controls on channel size are scale dependent. In channels with watersheds greater than 10 to 100 km2, widths are narrower in channels with thick woody bank vegetation than in grass lined or nonforested banks. The converse is true in smaller streams apparently due to interactions between woody debris, shading, understory vegetation, rooting characteristics, and channel size. A tree based statistical method (regression tree) is introduced and tested as a tool for identifying thresholds of response and interpreting interactions between variables. The implications of scale dependent controls on channel width are discussed in the context of stable channel design methods and development of regional hydraulic geometry curves.  相似文献   
992.
Wetland loss alters the hydrology of wetlandscapes in poorly understood ways. To quantify the effects of wetland loss on subsurface hydrology, a physically based hydrologic model that simulates the timing and pathways of subsurface hydrologic connections was coupled with wetland inventories over a 50‐year period during which substantial wetland loss occurred. The model revealed, based on vertical variations in saturated hydraulic conductivities, wetland loss of different degrees led to a contraction of catchment contributing areas to local surface waters but an expansion of contributing areas to the regional surface water body. This shift in groundwater contributing areas reflected (1) a decrease in baseflow contribution to the local surface water bodies, and (2) an increase in the transit time and length of subsurface hydrologic connections with an associated increase in the magnitude and age of baseflow discharging to the regional surface water body. The model also showed regions with thick permeable aquifers were particularly sensitive to the loss of wetlands. Our ability to predict these changes in hydrology of the watershed provides important support for designing science‐based policies to promote sustainable water resource management.  相似文献   
993.
We examined the impacts of changes in land cover and soil conditions on the flow regime of the upper Delaware River Basin using the Water Availability Tool for Environmental Resources. We simulated flows for two periods, c. 1600 and 1940, at three sites using the same temperature and precipitation conditions: the East Branch, West Branch, and mainstem Delaware River at Callicoon, New York. The 1600 period represented pristine forest and soils. The 1940 period included reduced forest cover, increased agriculture, and degraded soils with reduced soil macropore fractions. A model‐sensitivity test examined the impact of soil macropore and land cover change separately. We assessed changes in flow regimes between the 1600 and 1940 periods using a variety of flow statistics, including established ecological limits of hydrologic alteration (ELOHA) thresholds. Reduced forest soil macropore fraction significantly reduced summer and fall baseflows. The 1940 period had significantly lower Q50 flows (50% exceedance) than the 1600 period, as well as summer and fall Q90 and Q75–Q90 flows below the ELOHA thresholds. The one‐ to seven‐day minimum flows were also lower for the 1940 period, by 17% on the mainstem. 1940 flows were 6% more likely than the 1600 period to fall below the low‐flow threshold for federally endangered dwarf wedgemussel (Alasmidonta heterodon) habitat. In contrast, the 1940 period had higher flows than the 1600 period from late fall to early winter.  相似文献   
994.
黑土区小流域土壤氮素空间分布及主控因素研究   总被引:3,自引:0,他引:3  
在经典统计学和地统计学的基础上,结合"3S"技术,对黑土区海沟河小流域土壤表层(0~20 cm)中全氮(TN)、碱解氮(AN)的空间变异、分布特征及主控因素进行深入探讨.结果表明:海沟河小流域土壤TN含量处于较高水平,AN含量为中等水平;TN和AN的变程分别为900 m和1282 m,其空间变异均受地形、成土母质等结构性要素影响较大,在东-西(E-W)方向的空间变异相对剧烈;TN含量与坡度等地形指标显著性相关,AN含量与高程等地形要素显著性相关;回归协同克里格插值结果显示,TN自东向西呈现"高-低"交替的带状格局,与土地利用方式在东西方向上的演替相近,AN的高值在东部山区,低值在中部旱地分布集中的区域,呈现"两边高,中间低"的特征;水系、居民点等环境要素对TN和AN的空间分布存在明显的作用距离,土地利用方式及坡位对TN和AN含量分布影响显著,且存在较大差异.  相似文献   
995.
我国广大小流域迫切需要开展农业面源污染控制,但却面临着水质、水文、气象、土地等监测资料不足的信息约束条件。为了应对此问题,本文以具有冻融变化特征的东北地区为例,开发了一套信息约束条件下的流域农业面源污染控制优化系统。首先,提出了农业面源污染负荷的计算方法。其次,分析了流域水质的影响因素。接着,建立了面源污染输入与流域出水口水质之间的响应关系,经验证该系统输出数据与实际污染状况相吻合,能够很好地模拟流域污染状况。最后通过各种削减策略的运用,模拟出农业面源污染削减率和削减后的总氮浓度。通过采用本研究制定的控制优化方案,改变种植类型和面积以及改善施肥配施比,将污染源数据进行量化作为输入数据,经系统输出得到模拟污染输出数据,可得到较好的污染削减效果。研究结果为信息约束条件下治理流域农业面源污染提供了决策支持。  相似文献   
996.
三峡库区干流总磷浓度变化趋势分析研究   总被引:3,自引:0,他引:3  
通过分析2000年-2015年的三峡库区长江、嘉陵江、乌江干流总磷浓度数据,掌握三峡库区总磷总体水平,长江干流总磷浓度为0.135±0.043 mg/1,为Ⅲ类水质;嘉陵江总磷浓度较低,为0.075±0.033 mg/1,为Ⅱ类水质;乌江干流总磷浓度较高,约为0.403±0.288 mg/1,为V类水质.长江重庆段入境朱沱断面的总磷浓度在枯、丰水期呈显著上升趋势,出境培石断面的总磷浓度在枯、平水期呈显著上升趋势.乌江干流入境万木断面和入库锣鹰断面总磷浓度变化趋势一致,都表现为先升高后降低.从2009年开始升高,在2011年或2012年达到峰值,最大浓度超过1.0 mg/1,然后开始逐年下降,到2015年浓度下降到0.2 mg/l.  相似文献   
997.
Targeting of agricultural conservation practices to the most effective locations in a watershed can promote wise use of conservation funds to protect surface waters from agricultural nonpoint source pollution. A spatial optimization procedure using the Soil and Water Assessment Tool was used to target six widely used conservation practices, namely no‐tillage, cereal rye cover crops (CC), filter strips (FS), grassed waterways (GW), created wetlands, and restored prairie habitats, in two west‐central Indiana watersheds. These watersheds were small, fairly flat, extensively agricultural, and heavily subsurface tile‐drained. The targeting approach was also used to evaluate the model's representation of conservation practices in cost and water quality improvement, defined as export of total nitrogen, total phosphorus, and sediment from cropped fields. FS, GW, and habitats were the most effective at improving water quality, while CC and wetlands made the greatest water quality improvement in lands with multiple existing conservation practices. Spatial optimization resulted in similar cost‐environmental benefit tradeoff curves for each watershed, with the greatest possible water quality improvement being a reduction in total pollutant loads by approximately 60%, with nitrogen reduced by 20‐30%, phosphorus by 70%, and sediment by 80‐90%.  相似文献   
998.
Public trust in organizations focused on improving environmental quality is important for increasing awareness and changing behaviors that have water quality implications. Few studies have addressed trust in soil and water quality information sources, particularly for both agricultural and nonagricultural respondents of the same watersheds. Surveys in 19 watersheds across five states in the Midwest assessed trust in, and familiarity with, soil and water quality information sources. Overall, respondents most trusted University Extension, Soil and Water Conservation Districts, and the Natural Resource Conservation Service, while lawn care companies, environmental groups, and land trusts were less trusted. Significant differences in trusted sources were found between watersheds, and between agricultural and nonagricultural respondents across and within watersheds. Among agricultural respondents, a clear relationship exists between familiarity and trust; as familiarity with an organization increases, so too does level of trust. This relationship is less clear‐cut for nonagricultural respondents in this region. We highlight implications of these findings for soil and water quality outreach efforts.  相似文献   
999.
Over the past century, channelization, agricultural tiling, and land use changes have resulted in significant stream channel degradation of the Cache River in southern Illinois. With the increasing interest in restoration of the watershed's bottomland forests and swamps, we sought to characterize geomorphic change over the past 110 years to inform restoration and management. A previously surveyed stretch of river was resurveyed in the fall of 2011, following a record flood in the spring of that year. Results suggest that the slope of the channel in this section of the river has increased 345% between 1903 and 1972 (p < 0.01), but has not changed significantly since (p = 0.12). Within that same time period, bank heights increased between 1 and 7 m and bed elevation decreased between 1 and 5 m. Changes in resurveyed cross sections appear to be primarily due to recent flood scour. It appears as though early 20th Century stream channel modifications had immediate effects on the geomorphology of the channel; however, channel geometry is now at or near equilibrium. This case study of the Cache River watershed demonstrates how and why successful restoration will require integration of geomorphic processes of the system.  相似文献   
1000.
In this study, we used public participation geographic information systems methods to collect spatial data identifying places that stakeholders in Mobile Bay, Alabama think are important providers of watershed services. These methods allowed us to spatially analyze participatory data from general public respondents and directly compare them with other scientific data in a geographic information systems database. This study identified which places in the region participants believe are important providers of specific watershed services, including fish nurseries, storm protection, flood protection, and water quality protection, which would likely have public support for conservation. Additionally, we assessed the accuracy of participant watershed service identification using land cover data to identify inconsistencies and participant knowledge gaps. This information can be used to target outreach education efforts. We found that the accuracy with which participants correctly identified places with the necessary land cover to provide each service varied considerably. We believe this to be a useful tool for managers to elicit stakeholder input and to identify knowledge gaps regarding the provisioning of watershed services.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号