首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157篇
  免费   19篇
  国内免费   16篇
安全科学   10篇
废物处理   3篇
环保管理   38篇
综合类   87篇
基础理论   20篇
污染及防治   12篇
评价与监测   3篇
社会与环境   2篇
灾害及防治   17篇
  2023年   4篇
  2022年   10篇
  2021年   5篇
  2020年   6篇
  2019年   5篇
  2018年   3篇
  2017年   2篇
  2016年   5篇
  2015年   8篇
  2014年   1篇
  2013年   5篇
  2012年   13篇
  2011年   16篇
  2010年   8篇
  2009年   6篇
  2008年   9篇
  2007年   6篇
  2006年   3篇
  2005年   4篇
  2004年   2篇
  2003年   5篇
  2002年   8篇
  2001年   7篇
  2000年   6篇
  1999年   3篇
  1998年   9篇
  1997年   7篇
  1996年   7篇
  1995年   4篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1989年   4篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
排序方式: 共有192条查询结果,搜索用时 31 毫秒
11.
推动冰雪资源高质量开发,是实现联合国可持续发展目标的新路径与新模式,是践行“两山理论”的重要环节,也是落实全民健身国家战略、助力体育强国建设的重要手段。在实际建设的理论指导层面,社会学所倡导的幸福感理论明确了冰雪资源高质量开发的终极目标,资源经济学的资源价值理论为冰雪资源的价值认识及价格核算提供了科学工具,地理学的人地关系理论是探究空间分异规律及人地系统耦合路径的理论基石。基于我国冰雪资源开发实践的系列转变及现实挑战,提出我国冰雪资源高质量开发的实现路径,即坚持观念创新的发展方式、多重协调的发展要求、积极开放的发展理念以及主客共赢的发展目标。  相似文献   
12.
以Suwannee River Fulvic Acid Standard II(SRFA)、Upper Mississippi River NOM(UMRN)、Elliott Soil Humic Acid Standard IV(ESHA)和Leonardite Humic Acid Standard(LHA) 4种溶解性有机物(Dissolved Organic Matter, DOM)为研究对象,利用125 W高压汞灯作为模拟光源进行室内模拟光解实验,考察了DOM对冰相中蒽和芘光降解的影响.其中,SRFA和UMRN是水源DOM,ESHA和LHA是陆源DOM.结果表明,蒽和芘在冰相中均可以发生直接光降解.4种DOM对冰相中蒽和芘光降解的影响行为并不相同,水源DOM对冰相中蒽和芘光降解的影响程度小于陆源DOM.DOM对冰相中蒽和芘光降解的抑制以光屏蔽效应为主.4种DOM对冰相中蒽和芘光降解均产生淬灭效应,但淬灭程度相异,DOM对蒽激发态的淬灭程度高于其对芘激发态的淬灭程度.与DOM共存条件下,冰相中芘的表观光解速率常数与DOM的SUVA值具有显著正相关性(p0.01).  相似文献   
13.
为了考察中国亚热带不同森林类型对雨雪冰冻灾害的响应模式,以粤北天井山3种代表性的林型—针叶林、阔叶林和混交林为对象,于不同森林类型中比较受损森林与未受损森林在凋落物年产量、成分及月际动态方面的差异,从而在凋落物水平上反映不同森林类型在雨雪冰冻灾害后的早期恢复力。研究结果表明,灾后针叶林、阔叶林和混交林的年凋落量分别为0.52、3.21、1.37 t.hm-2,比未受损的同种森林类型年凋落量显著减少,减少程度分别为87.89%、53.46%、76.78%。由此可以看出阔叶林的植被恢复情况最好,说明在凋落物水平上,其灾后恢复的早期阶段恢复力最强。在凋落物成分方面,灾后各森林类型叶凋落物所占比例显著增加,枝凋落物所占比例则显著减少。受损针叶林和阔叶林的凋落物月动态与未受损森林基本一致,但其波动幅度较小;在混交林中,受损和未受损森林其凋落量的季节动态模式则表现出不一致性且为不规则型。根据研究结果,建议在亚热带地区优先考虑种植阔叶林以促进受损森林在类似雨雪冰冻灾害的极端天气后的恢复。  相似文献   
14.
青藏高原冰川雪冰微生物研究进展   总被引:5,自引:0,他引:5  
微生物作为青藏高原冰川研究的一个参数,不仅能提供丰富的物种和嗜冷基因资源作用于冰川的能量和化学物质平衡,而且还与气候和环境相关联.近年来,青藏高原冰川雪藻的研究主要在南部的Yala冰川开展,细菌的研究集中在北部冰川.这些研究主要针对冰川雪冰微生物与环境的关系.未来除在研究方法上加以改进外,还应该在微生物多样性、生态意义、嗜冷机制及其与气候和环境的关系等方面进一步深入研究.参36  相似文献   
15.
珠江三角洲新垦大气核化速率研究   总被引:1,自引:1,他引:0  
计算了珠江三角洲新垦地区的大气核化速率,对核化机制及核化速率计算的影响因素进行了分析. 基于PRIDE-PRD2004观测实验期间新垦站点的气溶胶数浓度谱分布观测数据,计算出3 nm粒子的表观形成速率. 根据表观形成速率与核化速率之间的关系式,分析了1 nm粒径临界核的大气核化速率. 结果表明,新粒子事件期间3 nm粒子的表观形成速率为7.2~9.4 cm-3·s-1,1 nm临界核的大气核化速率为7.65×102~1.14×105 cm-3,与前体物硫酸蒸气浓度比较一致,气态硫酸应是主要的核化前体物. 新垦地区背景气溶胶中积聚模态对碰并汇贡献较大,事件期间气溶胶数浓度变化对核化速率计算结果影响不大. 本研究获取了新垦核化速率信息,有助于进一步了解核化机制. 由于成核临界粒径的不确定性对核化速率计算结果影响很大,确定成核临界粒径对核化速率计算十分重要.  相似文献   
16.
1996-07-08,中美联合考察队成功地考察了希夏邦马地区达索普冰川,并提出了一支20m长的冰芯,这支冰芯是迄今为止世界上海拔最高的冰芯。对资料分析发现离子含量变经显示强烈的周期性变化,反映了季节变化的特征。离子浓度高低变化将指示气候的冷暖变化,并与δ^18O存在着对应关系,  相似文献   
17.
New particle formation (NPF) event at multi rural sites in China Identifying the characteristics of NPF event Comparing NPF event between clean and polluted conditions Quantifying contribution to the cloud condensation nuclei Implication of climate and air quality Long-term continuous measurements of particle number size distributions with mobility diameter sizes ranging from 3 to 800 nm were performed to study new particle formation (NPF) events at Shangdianzi (SDZ), Mt. Tai (TS), and Lin’an (LAN) stations representing the background atmospheric conditions in the North China Plain (NCP), Central East China (CEC), and Yangtze River Delta (YRD) regions, respectively. The mean formation rate of 3-nm particles was 6.3, 3.7, and 5.8 cm−3·s−1, and the mean particle growth rate was 3.6, 6.0, and 6.2 nm·h−1 at SDZ, TS, and LAN, respectively. The NPF event characteristics at the three sites indicate that there may be a stronger source of low volatile vapors and higher condensational sink of pre-existing particles in the YRD region. The formation rate of NPF events at these sites, as well as the condensation sink, is approximately 10 times higher than some results reported at rural/urban sites in western countries. However, the growth rates appear to be 1–2 times higher. Approximately 12%–17% of all NPF events with nucleated particles grow to a climate-relevant size (>50 nm). These kinds of NPF events were normally observed with higher growth rate than the other NPF cases. Generally, the cloud condensation nuclei (CCN) number concentration can be enhanced by approximately a factor of 2–6 on these event days. The mean value of the enhancement factor is lowest at LAN (2–3) and highest at SDZ (~4). NPF events have also been found to have greater impact on CCN production in China at the regional scale than in the other background sites worldwide.  相似文献   
18.
南京夏季气溶胶吸湿增长因子和云凝结核的观测研究   总被引:4,自引:0,他引:4  
为了更加全面地研究长三角地区气溶胶的理化特性,尤其是吸湿和活化特性,于2013年8月在南京市区对气溶胶的吸湿增长因子(GF)和云凝结核(CCN)展开相关观测研究.使用串联电迁移率颗粒物吸湿粒径分析仪(H-TDMA)观测32~350nm气溶胶在相对湿度为90%条件下的吸湿性参数,使用云凝结核计数器(CCNC)观测过饱和度在0.2%~0.8%的CCN数浓度.结果表明,不同气溶胶粒子的吸湿增长行为均表现出较为明显的双峰分布,即一个强吸湿模态和一个弱吸湿模态,且吸湿性在不同粒径(爱根核模态和积聚模态)上存在较为明显的不同,不溶性物质和二次气溶胶所占比重较大,并且在稳定的天气条件下,气溶胶的混合状态表现为由外混向内混发展的过程.观测期间该区域CCN的平均数浓度为13776(0.6%)cm-3,比沿海区、山区、干旱地区及清洁城市地区要高很多.其日变化表现为中午时刻出现峰值,影响因素主要与光化学反应有关.同时25日出现的轻雾过程对CCN有较为明显的清除作用.通过吸湿性参数计算得到的CCN数浓度和实际观测得到的CCN数浓度进行了闭合实验,结果显示出较好的相关性,表明将未饱和条件下观测得到的吸湿性参数带入到K?hler方程中,即可预测过饱和条件下气溶胶的活化能力.  相似文献   
19.
为揭示成渝地区大气复合污染成因,选择乡村点资阳站的冬季,实测了颗粒物数浓度及其粒径谱分布、云凝结核(CCN),在二氧化硫、光解速率(JO1D)实测值基础上估算了新粒子生成的重要前体物气态硫酸的浓度.2012年12月5日到2013年1月5日观测期间,3~582nm颗粒物数浓度水平较高,平均值为(16072±9713)cm-3.颗粒物数谱分布呈现以积聚模态为主体的特征,占总颗粒物数浓度的46%,此比值高于我国北京、上海、广州等城市和珠江三角洲及长江三角洲的乡村点和背景点.在较高颗粒物凝结汇(CS)水平下[(4.3±3.6)×10-2s-1],甄别出7次新粒子生成(NPF)事件,占观测天数的23%.NPF事件发生时,颗粒物生成速率与增长速率分别为(5.2±1.4)cm-3s-1,(3.6±2.5)nm/h. NPF事件对CCN数浓度有明显贡献,NPF发生后CCN数浓度平均增长19%.  相似文献   
20.
石家庄地区雾霾天气下云滴和云凝结核的分布特征   总被引:3,自引:1,他引:2       下载免费PDF全文
2009年5~10月在石家庄地区对雾霾天气下的近地面到高空的云雾滴和云凝结核(CCN)进行了7架次飞机探测.利用PMS云粒子测量仪器、机载温湿仪和连续气流纵向热梯度云凝结核仪获得的云雾粒子和云凝结核(CCN)探测资料,分析了层积云(Sc)和高积云(Ac)中云粒子浓度、液态含水量、粒子算术平均直径和粒子有效平均直径的垂直分布特征;分析了CCN垂直和水平分布特征以及谱分布.结果表明雾霾天气状况下,云滴数浓度在102个/cm3量级上.高云粒子粒径总体大于低云粒子.云含水量平均值范围为0.03~0.14g/m3;地面到600 m高度内, CCN值的平均值为3034cm-3(过饱和度S=0.3%).对CCN的活化谱进行拟合表明石家庄属于典型大陆性核谱,云对CCN有消耗作用,逆温层的存在使得该区CCN浓度累积增加.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号