首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   231篇
  免费   18篇
  国内免费   57篇
安全科学   12篇
环保管理   99篇
综合类   119篇
基础理论   25篇
污染及防治   39篇
评价与监测   5篇
社会与环境   2篇
灾害及防治   5篇
  2023年   1篇
  2022年   5篇
  2021年   5篇
  2020年   3篇
  2019年   5篇
  2018年   3篇
  2017年   6篇
  2016年   10篇
  2015年   11篇
  2014年   8篇
  2013年   16篇
  2012年   18篇
  2011年   16篇
  2010年   15篇
  2009年   19篇
  2008年   13篇
  2007年   14篇
  2006年   23篇
  2005年   8篇
  2004年   9篇
  2003年   10篇
  2002年   8篇
  2001年   7篇
  2000年   7篇
  1999年   4篇
  1998年   4篇
  1997年   3篇
  1996年   5篇
  1995年   3篇
  1994年   3篇
  1993年   4篇
  1992年   10篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1984年   1篇
  1982年   2篇
  1981年   2篇
  1980年   4篇
  1979年   1篇
  1977年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有306条查询结果,搜索用时 15 毫秒
141.
ABSTRACT: Spatial variability of infiltration rates was examined for a site in southern Idaho. Data used represented 13 sampling dates over a 5-year period. Samples initially were taken within a native big sagebrush community, again after plowing and seeding to crested and intermediate wheatgrass, and then while the seeded area was being grazed by domestic livestock. Results indicate that either a normal or log normal distribution may be adequate for describing measured infiltration rates.  相似文献   
142.
ABSTRACT: Techniques for predicting the hydrologic effects of grazing schemes have heretofore been unavailable. The available literature on grazing intensity influences on infiltration rates is used as a basis for a model of infiltration behavior in response to grazing systems. Background, development, cautions, and an example are given.  相似文献   
143.
ABSTRACT: Infiltration processes at the plot scale are often described and modeled using a single effective hydraulic conductivity (Kg) value. This can lead to errors in runoff and erosion prediction. An integrated field measurement and modeling study was conducted to evaluate: (1) the relationship among rainfall intensity, spatially variable soil and vegetation characteristics, and infiltration processes; and (2) how this relationship could be modeled using Green and Ampt and a spatially distributed hydrologic model. Experiments were conducted using a newly developed variable intensity rainfall simulator on 2 m by 6 m plots in a rangeland watershed in southeastern Arizona. Rainfall application rates varied between 50 and 200 mm/hr. Results of the rainfall simulator experiments showed that the observed hydrologic response changed with changes in rainfall intensity and that the response varied with antecedent moisture condition. A distributed process based hydrologic simulation model was used to model the plots at different levels of hydrologic complexity. The measurement and simulation model results show that the rainfall runoff relationship cannot be accurately described or modeled using a single Kg value at the plot scale. Multi‐plane model configurations with infiltration parameters based on soil and plot characteristics resulted in a significant improvement over single‐plane configurations.  相似文献   
144.
ABSTRACT: Soil-water conditions provide valuable insight into the hydrologic system in an area. A soil-water balance quantitatively summarizes soil-water conditions and is based on climatic, soil, and vegetation characteristics that vary spatially and temporally. Soil-water balances in the Great Plains of the central United States were simulated for 1951–1980. Results of the simulations were mean annual estimates of infiltration, runoff, actual evapotranspiration, potential recharge, and consumptive water and irrigation requirements at 152 climatic data stations. A method was developed using a geographic information system to integrate and map the simulation results on the basis of spatially variable climatic, soil, and vegetation characteristics. As an example, simulated mean annual potential recharge was mapped. Mean annual potential-recharge rates ranged from less than 0.5 inch in much of the north-central and southwestern Great Plains to more than 10 inches in parts of eastern Texas and southwestern Arkansas.  相似文献   
145.
ABSTRACT: Techniques employed to simulate infiltration and subsurface ground-water flow were examined for a number of available watershed models. The large number of processes that these models simulate prohibits detailed analysis of subsurface flow, due to excessive computer and data requirements. Such models emphasize surface flow and include only that portion of water lost to the subsurface and the portion returned to the stream as baseflow. Problems were examined in adopting conjunctive use models, which allow the coordinated exploitation and management of both surface and ground-water resources. The application of conjunctive use models in water resources management is expected to increase dramatically over the next decade.  相似文献   
146.
ABSTRACT: Rainfall simulator studies were conducted during 1982 and 1983 on agricultural and native rangeland soils of the same soil series in northern Utah. Results indicate that the same soil series mapped at different locations on agricultural land will have similar 10, 20, and 30 minute infiltration rates and similar interrill erosion rates. Seasonal differences in infiltration and erosion rates were significant. Comparisons between agricultural and native soils were complicated by three-way statistical interactions. Seasonal variations in both infiltration rates and erosion rates were greatest on agricultural soils. Of four soil series on native rangeland, only one showed significant seasonal variation in infiltration rates, while erosion rates were similar across all seasons for all soil series. Soil and cover factors important in predicting infiltration and erosion were identified.  相似文献   
147.
The U.S. Soil Conservation Service has developed a method for estimating runoff for small watersheds when stream flow data are not available. The technique is based on a simplified infiltration model of runoff using various kinds of soil, land use, and empirical approximation.  相似文献   
148.
Low impact development (LID) and other land development methods have been presented as alternatives to conventional storm water management and site design. Low impact development encourages land preservation and use of distributed, infiltration‐based storm water management systems to minimize impacts on hydrology. Such systems can include shallow retention areas, akin to natural depression storage. Other approaches to land development may emphasize land preservation only. Herein, an analysis of four development alternatives is presented. The first was Traditional development with conventional pipe/pond storm water management and half‐acre lots. The second alternative was Cluster development, in which implementation of the local cluster development ordnance was assumed, resulting in quarter‐acre lots with a pipe/pond storm water management system and open space preservation. The “Partial” LID option used the same lot layout as the Traditional option, with a storm water management system emphasizing shallow depression storage. The “Full” LID used the Cluster site plan and the depression storage‐based storm water management system. The alternatives were compared to the hydrologic response of existing site conditions. The analysis used two design storms and a continuous rainfall record. The combination of land preservation and infiltration‐based storm water management yielded the hydrologic response closest to existing conditions, although ponds were required to control peak flows for the design storms.  相似文献   
149.
In this study, a constrained minimization method, the flexible tolerance method, was used to solve the optimization problems for determining hydrologic parameters in the root zone: water uptake rate, spatial root distribution, infiltration rate, and evaporation. Synthetic soil moisture data were first generated using the Richards' equation and its associated initial and boundary conditions, and these data were then used for the inverse analyses. The results of inverse simulation indicate the following. If the soil moisture data contain no noise, the rate of estimated water uptake and spatial root distribution parameters are equal to the true values without using constraints. If there is noise in the observed data, constraints must be used to improve the quality of the estimate results. In the estimation of rainfall infiltration and surface evaporation, interpolation methods should be used to reduce the number of unknowns. A fewer number of variables can improve the quality of inversely estimated parameters. Simultaneous estimation of spatial root distribution and water uptake rate or estimation of evaporation and water uptake rate is possible. The method was used to estimate the water uptake rate, spatial root distribution, infiltration rate, and evaporation using long‐term soil moisture data collected from Nebraska's Sand Hills.  相似文献   
150.
文章运用人工土柱模拟的方法来研究LAS对人工快滤系统去除TP的影响。研究结果表明,随着污水中LAS浓度(≤100mg/L)的增加,人工快滤系统对TP的去除率表现为逐渐下降。TP的去除率大小为处理Ⅰ>处理Ⅱ>处理Ⅲ>处理Ⅳ。在延长干化时间条件下,TP的去除率增大,并且LAS浓度越大效果越明显。LAS对人工快滤系统中TP的去除有着显著的影响;但合理地控制工艺参数能够实现LAS和TP的有效去除。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号