首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   437篇
  免费   121篇
安全科学   12篇
废物处理   4篇
环保管理   223篇
综合类   193篇
基础理论   33篇
污染及防治   26篇
评价与监测   40篇
社会与环境   23篇
灾害及防治   4篇
  2025年   7篇
  2024年   20篇
  2023年   17篇
  2022年   15篇
  2021年   21篇
  2020年   27篇
  2019年   20篇
  2018年   18篇
  2017年   20篇
  2016年   32篇
  2015年   25篇
  2014年   28篇
  2013年   25篇
  2012年   28篇
  2011年   29篇
  2010年   23篇
  2009年   28篇
  2008年   19篇
  2007年   31篇
  2006年   25篇
  2005年   17篇
  2004年   6篇
  2003年   12篇
  2002年   13篇
  2001年   8篇
  2000年   5篇
  1999年   1篇
  1998年   3篇
  1997年   4篇
  1996年   4篇
  1995年   2篇
  1993年   2篇
  1992年   2篇
  1990年   4篇
  1989年   1篇
  1988年   3篇
  1986年   1篇
  1985年   2篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1978年   2篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有558条查询结果,搜索用时 0 毫秒
21.
    
This study quantified the impact of bison and cattle grazing management practices on bare ground coverage at the watershed, riparian, and forested riparian scales within the Flint Hills ecoregion in Kansas. We tested for correlations between bare ground coverage and fluvial suspended sediment concentrations during base‐flow and storm‐flow events. We used remotely sensed imagery combined with field surveys to classify ground cover and quantify the presence of bare ground. Base‐flow water samples were collected bi‐monthly during rain‐free periods and 24 h following precipitation events. Storm‐flow water samples were collected on the rising limb of the hydrograph, using single‐stage automatic samplers. Ungrazed treatments contained the lowest coverage of bare ground at the watershed, riparian, and forested riparian scales. Bison treatments contained the highest coverage of bare ground at the watershed scale, while high‐density cattle treatments contained the highest coverage of bare ground at the riparian and forested riparian scales. In bison and cattle‐grazed treatments, a majority of bare ground was located near fence lines, watershed boundaries, and third‐ and fourth‐order stream segments. Inorganic sediment concentrations at base flow were best predicted by riparian bare ground coverage, while storm‐flow sediment concentrations were best predicted by watershed scale bare ground coverage.  相似文献   
22.
为提高煤矿防治水管理水平,预防和消除矿井水害,在层次分析法的基础上建立中性值作为参照对象对矿井水害风险进行实时评判的方法。根据《煤矿防治水细则》建立以矿井水文地质类型、矿井涌水量标准分数、突水预兆、采掘面位置、探水结果为准则层的层次结构模型,并对各评价指标赋权。依据制定的水害风险评价指标的评分细则和监测监控数据并结合其权重得到水害评价总得分。通过总得分与中性参照分数比较得出预测结果:水害评价总得分大于中性参照分数,证明水害的威胁小,分数越高越安全;反之则水害的威胁较大,分数越低越危险,这时需要加强防治水的力度,令评价分数管控大于中性参照分数。这种方法依赖于井下监测监控数据进行量化评价,能实时、客观、全面且准确地反映煤矿水害的风险情况。  相似文献   
23.
    
The health of freshwater biota is dependent on streamflow, yet identification of the flow regimes required to maintain ecological integrity remains challenging to states in the United States seeking to establish ecological flows. We tested the relationship between decreases in streamflow and Shannon‐Weaver diversity index of fish species for four flow‐based habitat guilds: riffle, riffle‐run, pool‐run, and pool in North Carolina. We found species that prefer shallow habitats, such as riffles and riffle‐runs were the most sensitive to decreases in streamflow; whereas no significant relationships were found for pool or pool‐run species. The sensitivity to decreases in streamflow was greatest during summer and fall, when streams are naturally lower. When all fish habitat guilds were included in the assessment of flow‐biology relationships, there were no significant relationships to decreases in streamflow. As the sensitivity of fish to reductions in streamflow is not constant across habitat guilds, combining all fish species together for flow‐biology analyses may greatly underestimate the response of fish species to decreases in flow and should be acknowledged when establishing ecological flows.  相似文献   
24.
    
Since 1980, the Lake Tahoe Interagency Monitoring Program (LTIMP) has provided stream‐discharge and water quality data—nitrogen (N), phosphorus (P), and suspended sediment—at more than 20 stations in Lake Tahoe Basin streams. To characterize the temporal and spatial patterns in nutrient and sediment loading to the lake, and improve the usefulness of the program and the existing database, we have (1) identified and corrected for sources of bias in the water quality database; (2) generated synthetic datasets for sediments and nutrients, and resampled to compare the accuracy and precision of different load calculation models; (3) using the best models, recalculated total annual loads over the period of record; (4) regressed total loads against total annual and annual maximum daily discharge, and tested for time trends in the residuals; (5) compared loads for different forms of N and P; and (6) tested constituent loads against land use‐land cover (LULC) variables using multiple regression. The results show (1) N and P loads are dominated by organic N and particulate P; (2) there are significant long‐term downward trends in some constituent loads of some streams; and (3) anthropogenic impervious surface is the most important LULC variable influencing water quality in basin streams. Many of our recommendations for changes in water quality monitoring and load calculation methods have been adopted by the LTIMP.  相似文献   
25.
Abstract: Unpaved road‐stream crossings increase sediment yields in streams and alter channel morphology and stability. Before restoration and sedimentation reduction strategies can be implemented, a priority listing of unpaved road‐stream crossings must be created. The objectives of this study were to develop a sedimentation risk index (SRI) for unpaved road‐stream crossings and to prioritize 125 sites in the Choctawhatchee watershed (southeastern Alabama) using this model. Field surveys involved qualitative and quantitative observations of 73 metrics related to waterway conditions, crossing structures, road approaches, and roadside soil erosion. The road‐stream crossing risk analyses involved elimination of candidate metrics based on redundancy, skewness, lack of data, professional judgment, lack of nonzero values, unbalanced box plots, and limited ranges of values. A final selection of 12 metrics formed the SRI and weighed factors involving soil erodibility, road sedimentation abatement features, and stream morphology alteration. The SRI was organized into narrative categories (excellent, good, fair, poor, and very poor) based on the distribution of scores. No excellent sites (scores ≥55) were found in this study, 17 (20.7%) were good (low sedimentation risk), 37 (45.1%) were fair (moderate sedimentation risk), 26 (31.7%) were poor (high sedimentation risk), and two (2.5%) were very poor (high sedimentation risk). There was no significant difference in SRI scores among crossing structure type (round culverts, box culverts, and bridges) (H = 4.31, df = 2, p = 0.058). A future study of the Choctawhatchee watershed involving the same study sites could assess the success of restoration plans and activities based on site score improvement or decline.  相似文献   
26.
ABSTRACT: The presence of manganese in natural waters (>0.05 mg/L) degrades water-supply quality. A model was devised to predict the variation of manganese concentrations in river water released from an impoundment with the distance downstream. The model is one-dimensional and was calibrated using dissolved oxygen, biochemical oxygen demand, pH, manganese, and hydraulic data collected in the Duck River, Tennessee. The results indicated that the model can predict manganese levels under various conditions. The model was then applied to the Chattahoochee River, Georgia. Discrepancies between observed and predicted may be due to inadequate pH data, precipitation of sediment particles, unsteady flow conditions in the Chattahoochee River, inaccurate rate expressions for the low pH conditions, or their combinations.  相似文献   
27.
    
Ephemeral and intermittent streams are abundant in the arid and semiarid landscapes of the Western and Southwestern United States (U.S.). Connectivity of ephemeral and intermittent streams to the relatively few perennial reaches through runoff is a major driver of the ecohydrology of the region. These streams supply water, sediment, nutrients, and biota to downstream reaches and rivers. In addition, they provide runoff to recharge alluvial and regional groundwater aquifers that support baseflow in perennial mainstem stream reaches over extended periods when little or no precipitation occurs. Episodic runoff, as well as groundwater inflow to surface water in streams support limited naturally occurring riparian communities. This paper provides an overview and comprehensive examination of factors affecting the hydrologic, chemical, and ecological connectivity of ephemeral and intermittent streams on perennial or intermittent rivers in the arid and semiarid Southwestern U.S. Connectivity as influenced and moderated through the physical landscape, climate, and human impacts to downstream waters or rivers is presented first at the broader Southwestern scale, and secondly drawing on a specific and more detailed example of the San Pedro Basin due to its history of extensive observations and research in the basin. A wide array of evidence clearly illustrates hydrologic, chemical, and ecological connectivity of ephemeral and intermittent streams throughout stream networks.  相似文献   
28.
Sustainable use of water and land resources requires that these scarce resources be appropriately allocated among various competing human activities. Worldwide, there is a realization now that sustainable river basin management should be accorded the highest priority, because it deals not only with technical, but also with ecological and socioeconomic aspects, and thus calls for a multidisciplinary and integrated approach. However, most of the policy and planning documents have either remained silent, or have made only implicit reference to the importance of environmental water demand (EWD) and its quantification. Therefore, in the light of its importance, a methodology has been evolved in this article for quantifying EWD for various forested areas in two distinctly different Indian river basins: Brahmani (humid zone) and Sabarmati (dry zone). The article analyzes and discusses EWD estimates at three different spatial levels: river basins, states, and districts within them, and finally presents a comparative analysis of all these results. Findings of the present study will be immensely useful in understanding various ecological issues connected with water resource projects and proposals in these river basins.  相似文献   
29.
Intact riparian ecosystems are rich in biological diversity, but throughout the world, many have been degraded. Biodiversity declines, particularly of vertebrates, have led to experimental efforts to restore riparian forests by thinning young stands to accelerate creation of large diameter live trees. However, many vertebrates depend on large diameter deadwood that is standing as snags or fallen to the forest floor or fallen into streams. Therefore, we reviewed the sizes of deadwood and live trees used by different vertebrate species to understand which species are likely to benefit from different thinning treatments. We then examined how riparian thinning affects the long‐term development of both large diameter live trees and deadwood. To this end, we used a forest growth model to examine how different forest thinning intensities might affect the long‐term production and abundance of live trees and deadwood. Our results suggest that there are long‐term habitat tradeoffs associated with different thinning intensities. Species that utilize large diameter live trees will benefit most from heavy thinning, whereas species that utilize large diameter deadwood will benefit most from light or no thinning. Because far more vertebrate species utilize large deadwood rather than large live trees, allowing riparian forests to naturally develop may result in the most rapid and sustained development of structural features important to most terrestrial and aquatic vertebrates.  相似文献   
30.
Abstract: The joint influences of riparian vegetation and urbanization on fish assemblages were analyzed by depletion sampling in paired forested and nonforested reaches of 25 small streams along an urbanization gradient. Nonforested reaches were narrower than their forested counterparts, so densities based on surface area differ from linear densities (based on reach length). Linear densities (based on number or biomass of fish) of American eel, white sucker and tesselated darter, and the proportion of biomass of benthic invertivores were significantly higher in nonforested reaches, while linear densities of margined madtom and the number of pool species were significantly higher in forested reaches. Observed riparian effects may reflect differences in habitat and algal productivity between forested and nonforested reaches. These results suggest that relatively small‐scale riparian restoration projects can affect local geomorphology and the abundance of fish. Dense vegetative cover in riparian zones and similar or analogous habitats in both forested and nonforested reaches, the relatively small scale of the nonforested reaches, and the low statistical power to detect differences in abundance of rare species may have limited the observed differences between forested and nonforested reaches. There was a strong urbanization gradient, with reductions of intolerant species and increases of tolerant species and omnivores with increasing urbanization. Interactions between riparian vegetation type and urbanization were found for blacknose dace, creek chub, tesselated darter, and the proportion of biomass of lithophilic spawners. The study did not provide consistent support for the hypotheses that responses of fish to riparian vegetation would be overwhelmed by urban degradation or insignificant at low urbanization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号