首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   354篇
  免费   58篇
  国内免费   89篇
安全科学   11篇
废物处理   4篇
环保管理   216篇
综合类   164篇
基础理论   25篇
污染及防治   19篇
评价与监测   35篇
社会与环境   23篇
灾害及防治   4篇
  2024年   6篇
  2023年   8篇
  2022年   11篇
  2021年   16篇
  2020年   22篇
  2019年   18篇
  2018年   15篇
  2017年   18篇
  2016年   30篇
  2015年   25篇
  2014年   27篇
  2013年   24篇
  2012年   28篇
  2011年   28篇
  2010年   23篇
  2009年   28篇
  2008年   18篇
  2007年   31篇
  2006年   25篇
  2005年   17篇
  2004年   6篇
  2003年   12篇
  2002年   13篇
  2001年   8篇
  2000年   5篇
  1999年   1篇
  1998年   3篇
  1997年   4篇
  1996年   4篇
  1995年   2篇
  1993年   2篇
  1992年   2篇
  1990年   4篇
  1989年   1篇
  1988年   3篇
  1986年   1篇
  1985年   2篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1978年   2篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有501条查询结果,搜索用时 382 毫秒
361.
南四湖入湖重点污染河流筛选与水环境问题分析   总被引:4,自引:0,他引:4  
根据南四湖主要河流入湖口水质空间分布监测数据,按平均综合污染指数〖WTBX〗Pj〖WTBZ〗>2的标准共筛选出洸府河和薛城小沙河等17条重污染河流,这些河流CODcr、TP、TN的单项污染贡献率平均值依次为455%、763%、86.4%,说明南四湖TN和TP主要来自于重污染河流, CODcr、TP、TN的单项污染分担率平均值依次为22.7%、15.4%、61.9%,说明南四湖的首要入湖污染物是TN,其次是CODcr和TP。给出了南四湖湖东区入湖河口NH3 N与TN的线性回归方程,受湖西与湖东地形地势、河流形态、水力停留时间以及水体中pH、SS、叶绿素a等多种因素的影响,湖西比湖东河流的硝化过程较完全,湖西区和湖东区入湖河口氨氮与总氮的平均比值分别为025和065。分析表明,重污染河流的汇水区域一般都在主要城镇和工矿区分布,CODcr和氮污染物主要来自于工业和城市生活等点污染源,磷污染物主要来自于部分工业行业。因此,加强南四湖流域的工业结构调整、重点企业截污和城市污水处理厂脱氮除磷等点源控制措施仍是重中之重。  相似文献   
362.
This article couples two existing models to quickly generate flow and flood‐inundation estimates at high resolutions over large spatial extents for use in emergency response situations. Input data are gridded runoff values from a climate model, which are used by the Routing Application for Parallel computatIon of Discharge (RAPID) model to simulate flow rates within a vector river network. Peak flows in each river reach are then supplied to the AutoRoute model, which produces raster flood inundation maps. The coupled tool (AutoRAPID) is tested for the June 2008 floods in the Midwest and the April‐June 2011 floods in the Mississippi Delta. RAPID was implemented from 2005 to 2014 for the entire Mississippi River Basin (1.2 million river reaches) in approximately 45 min. Discretizing a 230,000‐km2 area in the Midwest and a 109,500‐km2 area in the Mississippi Delta into thirty‐nine 1° by 1° tiles, AutoRoute simulated a high‐resolution (~10 m) flood inundation map in 20 min for each tile. The hydrographs simulated by RAPID are found to perform better in reaches without influences from unrepresented dams and without backwater effects. Flood inundation maps using the RAPID peak flows vary in accuracy with F‐statistic values between 38.1 and 90.9%. Better performance is observed in regions with more accurate peak flows from RAPID and moderate to high topographic relief.  相似文献   
363.
The integration of the phosphorus (P) bioavailability concept into a P loading analysis for Cayuga Lake, New York, is documented. Components of the analyses included the: (1) monitoring of particulate P (PP), soluble unreactive P (SUP), and soluble reactive P (SRP), supported by biweekly and runoff event‐based sampling of the lake's four largest tributaries; (2) development of relationships between tributary P concentrations and flow; (3) algal bioavailability assays of PP, SUP, and SRP from primary tributaries and the three largest point sources; and (4) development of P loading estimates to apportion contributions according to individual nonpoint and point sources, and to represent the effects of interannual variations in tributary flows on P loads. Tributary SRP, SUP, and PP are demonstrated to be completely, mostly, and less bioavailable, respectively. The highest mean bioavailability for PP was observed for the stream with the highest agriculture land use. Point source contributions to the total bioavailable P load (BAPL) are minor (5%), reflecting the benefit of reductions from recent treatment upgrades. The BAPL represented only about 26% of the total P load, because of the large contribution of the low bioavailable PP component. Most of BAPL (>70%) is received during high flow intervals. Large interannual variations in tributary flow and coupled BAPL will tend to mask future responses to changes in individual inputs.  相似文献   
364.
Using nonparametric Mann‐Kendall tests, we assessed long‐term (1953‐2012) trends in streamflow and precipitation in Northern California and Southern Oregon at 26 sites regulated by dams and 41 “unregulated” sites. Few (9%) sites had significant decreasing trends in annual precipitation, but September precipitation declined at 70% of sites. Site characteristics such as runoff type (groundwater, snow, or rain) and dam regulation influenced streamflow trends. Decreasing streamflow trends outnumbered increasing trends for most months except at regulated sites for May‐September. Summer (July‐September) streamflow declined at many sites, including 73% of unregulated sites in September. Applying a LOESS regression model of antecedent precipitation vs. average monthly streamflow, we evaluated the underlying streamflow trend caused by factors other than precipitation. Decreasing trends in precipitation‐adjusted streamflow substantially outnumbered increasing trends for most months. As with streamflow, groundwater‐dominated sites had a greater percent of declining trends in precipitation‐adjusted streamflow than other runoff types. The most pristine surface‐runoff‐dominated watersheds within the study area showed no decreases in precipitation‐adjusted streamflow during the summer months. These results suggest that streamflow decreases at other sites were likely due to more increased human withdrawals and vegetation changes than to climate factors other than precipitation quantity.  相似文献   
365.
A progression of advancements in Geographic Information Systems techniques for hydrologic network and associated catchment delineation has led to the production of the National Hydrography Dataset Plus (NHDPlus). NHDPlus is a digital stream network for hydrologic modeling with catchments and a suite of related geospatial data. Digital stream networks with associated catchments provide a geospatial framework for linking and integrating water‐related data. Advancements in the development of NHDPlus are expected to continue to improve the capabilities of this national geospatial hydrologic framework. NHDPlus is built upon the medium‐resolution NHD and, like NHD, was developed by the U.S. Environmental Protection Agency and U.S. Geological Survey to support the estimation of streamflow and stream velocity used in fate‐and‐transport modeling. Catchments included with NHDPlus were created by integrating vector information from the NHD and from the Watershed Boundary Dataset with the gridded land surface elevation as represented by the National Elevation Dataset. NHDPlus is an actively used and continually improved dataset. Users recognize the importance of a reliable stream network and associated catchments. The NHDPlus spatial features and associated data tables will continue to be improved to support regional water quality and streamflow models and other user‐defined applications.  相似文献   
366.
Bunte, Kristin, John P. Potyondy, Kurt W. Swingle, and Steven R. Abt, 2012. Spatial Variability of Pool-Tail Fines in Mountain Gravel-Bed Stream Affects Grid-Count Results. Journal of the American Water Resources Association (JAWRA) 48(3): 530-545. DOI: 10.1111/j.1752-1688.2011.00629.x Abstract: Fine sediment (<2 and <6 mm) particles underlying a 49-intersection grid placed on a streambed at 25, 50, and 75% of the wetted pool-tail width are commonly counted to assess the status and trend of aquatic ecosystems or to monitor changes in the supply of fines in mountain gravel-bed streams. However, results vary even when crews perform nearly identical procedures. This study hypothesized that spatial variability of pool-tail fines affects grid-count results and that a sampling scheme can be optimized for precision and accuracy. Grid counts taken at seven evenly spaced locations across the wetted width of 10 pool tails in a pool-riffle study stream indicated a bankward fining trend with secondary peaks of fines within the stream center. Sampling locations close to the waterlines harbored more than twice as many fines as central locations. Most of the five grid-count schemes derived from the seven sampled locations produced significantly different results. Compared with sampling at all seven locations, schemes that focus near waterlines overpredicted fines, while those that focus on the center underpredicted them. Variability of fines among pool tails was the highest within a broad band along the waterlines; hence, focusing sampling there yielded the most variable results. The scheme sampling at 25, 50, and 75% of the wetted width had the lowest precision and moderate accuracy. Accuracy and precision of grid-count results can be greatly improved by sampling at seven even-spaced locations across the pool tail.  相似文献   
367.
Owens, Emmet M., Steven W. Effler, Anthony R. Prestigiacomo, David A. Matthews, and Susan M. O’Donnell, 2012. Observations and Modeling of Stream Plunging in an Urban Lake. Journal of the American Water Resources Association (JAWRA) 48(4): 707‐721. DOI: 10.1111/j.1752‐1688.2012.00646.x Abstract: The plunging behavior of two tributaries in Onondaga Lake, New York, is quantified based on a program of monitoring, process studies, and modeling. The dynamics of buoyancy of the tributaries are resolved with hourly measurements of temperature (T), specific conductance (SC), and turbidity (Tn) at the mouths, and observations every 6 h in the lake. Negative buoyancy of the tributaries is found to diminish and change rapidly during runoff events compared to dry periods. In‐lake patterns of the transport of plunging inflow are resolved for dry weather conditions using a dye tracer, and following a runoff event through measurements of T, SC, and Tn. The hydrodynamic/transport model ELCOM (Estuary Lake and Coastal Ocean Model) is demonstrated to perform well in simulating these patterns. Analyses conducted with the model establish the importance of diurnal effects and in‐lake mixing mediated by wind, the need for temporally detailed measurements during runoff events, and modifications of the plunging behavior of the urban tributary as it passes through a harbor. The model provides critical information to support rehabilitation programs for the lake by quantifying the transport of the two largest tributaries, particularly the distribution of the loads between the upper waters and stratified layers. The model predicts that 10% of the urban tributary load enters the upper waters of the lake within 24 h for a dry weather period; this portion increases to 30% for a runoff event.  相似文献   
368.
本文在分析和评价传统理论和已有文献的基础上,突破单一的收入差距影响劳动力流动的传统思维,构建出劳动力流动不仅受迁移地收入的实际效用变动因素的影响,而且受迁移成本变动因素影响的理论模型.并且根据长三角地区16地级市1995-2006年的面板数据,经过单位根检验和协整关系检验,利用回归模型,估计分析了域内外收入差距、直接成本变动、潜在风险成本对外部劳动力流入的影响度.估计结果显示,域内外收入差距与外部劳动力流入正相关,直接成本和潜在风险成本与外部劳动力流入负相关,进一步明确了收入差距和成本变动对劳动力流入的影响程度.鉴于各因素对外部劳动力流入所起的作用,要进一步促进我国长三角地区劳动力的合理流入,必须从以下两个方面着手:一是提高迁入地较高收入的边际效用,二是降低迁入地较高收入的成本率.  相似文献   
369.
Fog and low cloud cover (FLCC) and late summer recharge increase stream baseflow and decrease stream temperature during arid Mediterranean climate summers, which benefits salmon especially under climate warming conditions. The potential to discharge cool water to streams during the late summer (hydrologic capacity; HC) furnished by FLCC and recharge were mapped for the 299 subwatersheds ranked Core, Phase 1, or Phase 2 under the National Marine Fisheries Service Recovery Plan that prioritized restoration and threat abatement action for endangered Central California Coast Coho Salmon evolutionarily significant unit. Two spatially continuous gridded datasets were merged to compare HC: average hrs/day FLCC, a new dataset derived from a decade of hourly National Weather Satellite data, and annual average mm recharge from the USGS Basin Characterization Model. Two use‐case scenarios provide examples of incorporating FLCC‐driven HC indices into long‐term recovery planning. The first, a thermal analysis under future climate, projected 65% of the watershed area for 8–19 coho population units as thermally inhospitable under two global climate models and identified several units with high resilience (high HC under the range of projected warming conditions). The second use case investigated HC by subwatershed rank and coho population, and identified three population units with high HC in areas ranked Phase 1 and 2 and low HC in Core. Recovery planning for cold‐water fish species would benefit by including FLCC in vulnerability analyses.  相似文献   
370.
Abstract: Many rivers and streams of the Mid‐Atlantic Region, United States (U.S.) have been altered by postcolonial floodplain sedimentation (legacy sediment) associated with numerous milldams. Little Conestoga Creek, Pennsylvania, a tributary to the Susquehanna River and the Chesapeake Bay, is one of these streams. Floodplain sedimentation rates, bank erosion rates, and channel morphology were measured annually during 2004‐2007 at five sites along a 28‐km length of Little Conestoga Creek with nine colonial era milldams (one dam was still in place in 2007). This study was part of a larger cooperative effort to quantify floodplain sedimentation, bank erosion, and channel morphology in a high sediment yielding region of the Chesapeake Bay watershed. Data from the five sites were used to estimate the annual volume and mass of sediment stored on the floodplain and eroded from the banks for 14 segments along the 28‐km length of creek. A bank and floodplain reach based sediment budget (sediment budget) was constructed for the 28 km by summing the net volume of sediment deposited and eroded from each segment. Mean floodplain sedimentation rates for Little Conestoga Creek were variable, with erosion at one upstream site (?5 mm/year) to deposition at the other four sites (highest = 11 mm/year) despite over a meter of floodplain aggradation from postcolonial sedimentation. Mean bank erosion rates range between 29 and 163 mm/year among the five sites. Bank height increased 1 m for every 10.6 m of channel width, from upstream to downstream (R2 = 0.79, p < 0.0001) resulting in progressively lowered hydraulic connectivity between the channel and the floodplain. Floodplain sedimentation and bank erosion rates also appear to be affected by the proximity of the segments to one existing milldam, which promotes deposition upstream and scouring downstream. The floodplain and bank along the 28‐km reach produced a net mean sediment loss of 5,634 Mg/year for 2004‐2007, indicating that bank erosion was exceeding floodplain sedimentation. In particular, the three segments between the existing dam and the confluence with the Conestoga River (32% of the studied reach) account for 97% of the measured net sediment budget. Future research directed at understanding channel equilibria should facilitate efforts to reduce the sediment impacts of dam removal and legacy sediment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号