首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   566篇
  免费   71篇
  国内免费   368篇
安全科学   22篇
废物处理   22篇
环保管理   63篇
综合类   539篇
基础理论   228篇
污染及防治   106篇
评价与监测   12篇
社会与环境   10篇
灾害及防治   3篇
  2024年   1篇
  2023年   2篇
  2022年   16篇
  2021年   26篇
  2020年   27篇
  2019年   31篇
  2018年   37篇
  2017年   48篇
  2016年   40篇
  2015年   53篇
  2014年   39篇
  2013年   84篇
  2012年   66篇
  2011年   42篇
  2010年   49篇
  2009年   57篇
  2008年   32篇
  2007年   46篇
  2006年   43篇
  2005年   30篇
  2004年   24篇
  2003年   33篇
  2002年   18篇
  2001年   29篇
  2000年   22篇
  1999年   14篇
  1998年   7篇
  1997年   7篇
  1996年   10篇
  1995年   10篇
  1994年   8篇
  1993年   12篇
  1992年   5篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   4篇
  1987年   5篇
  1986年   1篇
  1985年   3篇
  1984年   5篇
  1983年   3篇
  1982年   7篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有1005条查询结果,搜索用时 343 毫秒
111.
胰岛素抵抗综合症目前在全世界以惊人的速度增长,成为21世纪公共健康的严重挑战。多例流行病学调查结果已经显示持久性有机污染物与胰岛素抵抗的关联。胰岛素信号传递受损是胰岛素抵抗的本质原因。考察机制发现,可在机体脂肪组织中贮存积累的持久性有机污染物,如二噁英、多氯联苯、溴代阻燃剂、有机氯农药等,可干扰细胞内受体如环芳烃受体、过氧化物酶体增殖物激活受体、导致氧化损伤、线粒体功能障碍并通过慢性炎症介质TNFα的释放及其相关信号调控;进而可能阻扰胰岛素信号传递中关键蛋白InsR或IRS-1/2正常磷酸化,导致胰岛素抵抗。  相似文献   
112.
许多具有氧化作用的空气污染物,均能使细胞产生氧化损伤,使胸腺基质淋巴生成素(thymic stromal lymphopoietin,TSLP)含量上升。而TSLP是一种启动过敏性炎症的重要因子,会导致哮喘等疾病发生率的上升。在本研究中用过氧化氢(H_2O_2)模拟具有氧化作用的空气污染物进行染毒,研究细胞氧化应激水平的变化,并讨论还原型谷胱甘肽(GSH)对细胞受氧化损伤的保护作用。将大鼠支气管上皮细胞(RTE)分组培养,每组设置6个平行实验,分别用低、中、高剂量H_2O_2染毒3 h;高剂量设置1个重复,作为保护组,在染毒前用GSH保护2 h。结果显示,高剂量组H_2O_2(3.2 mmol·L~(~(-1)))染毒的细胞,其细胞活力下降(P0.01),丙二醛(MDA)水平上升(P0.01),TSLP水平上升(P0.05),与之相比,用GSH保护后的同剂量染毒组,上述指标得到全面缓解(P0.01)。这表明高浓度的H_2O_2会损伤细胞活力,并使MDA及TSLP水平上升,而GSH对TSLP及MDA的升高有极显著的抑制作用,即对细胞有一定的保护作用。  相似文献   
113.
Microbial desalination cell (MDC) is a promising technology to desalinate water and generate electrical power simultaneously. The objectives of this study were to investigate the desalination performance of monovalent and divalent cations in the MDC, and discuss the effect of ion characteristics, ion concentrations, and electrical characteristics. Mixed salt solutions of NaCl, MgCl2, KCl, and CaCl2 with the same concentration were used in the desalination chamber to study removal of cations. Results showed that in the mixed salt solutions, the electrodialysis desalination rates of cations were: Ca2+ >Mg2+>Na+>K+. Higher ionic charges and smaller hydrated ionic radii resulted in higher desalination rates of the cations, in which the ionic charge was more important than the hydrated ionic radius. Mixed solutions of NaCl and MgCl2 with different concentrations were used in the desalination chamber to study the effect of ion concentrations. Results showed that when ion concentrations of Na+ were one-fifth to five times of Mg2+, ion concentration influenced the dialysis more profoundly than electrodialysis. With the current densities below a certain value, charge transfer efficiencies became very low and the dialysis was the main process responsible for the desalination. And the phosphate transfer from the anode chamber and potassium transfer from the cathode chamber could balance 1%–3% of the charge transfer in the MDC.  相似文献   
114.
从太原市焦化厂废水活性污泥中分离、筛选出一株苯酚降解细菌,经生理生化反应和16S rRNA鉴定,该菌株为Diaphorobacter属细菌,命名为PD-07.代谢机制研究表明,苯酚可诱导该菌合成邻苯二酚2,3-加氧酶降解苯酚.为了提高该菌株对苯酚的降解率,以海藻酸钙为材料,对该菌株进行包埋固定化研究.首先采用Plackett–Burman实验设计筛选出影响固定化菌株苯酚降解率的关键因素,然后采用最陡爬坡实验逼近最大苯酚降解率响应区域.最后用Box–Behnken实验设计及响应面回归分析,应用二次方程对实验数据进行拟合得,拟合曲线与实验实测值相关性良好,最佳条件为海藻酸钠浓度3.83%(m/V)、CaCl2 0.3mol/L、菌胶比1:26.73、固定化时间2h、摇床转速180r/min、培养温度30℃、初始pH值7.2、液固比4.86:1,在此条件下苯酚降解率可达96.89%.  相似文献   
115.
从2009年7月~2010年3月每月采集西太湖表层水样,分析叶绿素含量﹑蓝藻细胞裂解速率﹑磷酸盐浓度的变化,并通过切向流超滤系统分离得到的高分子量(1kDa~0.5μm)溶解性有机物的碳氮比值和高分子量溶解性有机碳浓度的变化.结果表明,西太湖蓝藻细胞裂解速率在11月达到最大值(0.43d-1),而磷酸盐和高分子量溶解性有机碳浓度分别在12月与9月达到最大值.细胞裂解速率与磷酸盐﹑高分子量溶解性有机碳浓度之间没有相关性,说明水华过后影响磷酸盐浓度﹑高分子量溶解性有机碳的因素很多,蓝藻细胞裂解只是其中重要因素之一.藻类水华的出现可能导致水体中其它磷形态(如有机磷)与磷酸盐之间的迁移转化,而大型浅水湖泊扰动导致的沉积物再悬浮和水华过后频繁的细菌活动都可能是影响高分子量溶解性有机碳的因素.秋季水华过后蓝藻细胞裂解释放的有机碳进入微食物网循环,引起细菌活动频繁,而溶解性有机物中含碳化合物比含氮化合物容易降解,所以碳氮比值逐渐减少.此外细菌通过硝酸盐合成溶解性有机氮也可能是碳氮比值减少的一个重要原因.  相似文献   
116.
A composite membrane bioreactor (CMBR) integrating the immobilized cell technique and the membrane separation technology was developed for groundwater denitrification. The CMBR had two well mixed compartments with one filled with the nitrate- containing influent and the other with a dilute ethanol solution; the compartments were separated by the composite membrane consisting of a microporous membrane facing the influent and an immobilized cell membrane facing the ethanol solution. Nitrate and ethanol molecules diffused from the respective compartments into the immobilized cell membrane where nitrate was reduced to gaseous nitrogen by the denitrifying bacteria present there with ethanol as the carbon source. The microporous membrane was attached to one side of the immobilized cell membrane for retention of the disaggregated bacteria. Relative to the single dose of external ethanol, the two-dose supplementation produced better treatment results as evidenced by the lower concentrations of NO3--N and ethanol (as measured by total organic carbon) of the effluent. The batch treatment in CMBR removed most of the nitrate in the influent and attained a stable denitrification rate of 0.1 g·m-2·h-1 for most of the 96-h cycles during the 30-cycle study. The effluent was essentially free of ethanol and nitrite nitrogen.  相似文献   
117.
The environmental impact of nanotechnology has caused a great concern. Many in vitro studies showed that many types of nanoparticles were cytotoxic. However, whether these nanoparticles caused cell membrane damage was not well studied. F2-isoprostanes are specific products of arachidonic acid peroxidation by nonenzymatic reactive oxygen species and are considered as reliable biomarkers of oxidative stress and lipid peroxidation. In this article, we investigated the cytotoxicity of different nanoparticles and the degree of cellular membrane damage by using F2-isoprostanes as biomarkers after exposure to nanoparticles. The human lung epithelial cell line A549 was exposed to four silica and metal oxide nanoparticles: SiO2 (15 nm), CeO2 (20 nm), Fe2O3 (30 nm), and ZnO (70 nm). The levels of F2-isoprostanes were determined by using high-performance liquid chromatography/mass spectrometry. The F2-isoprostanes’ peak was identified by retention time and molecular ion m/z at 353. Oasis HLB cartridge was used to extract F2-isoprostanes from cell medium. The results showed that SiO2, CeO2, and ZnO nanoparticles increased F2-isoprostanes levels significantly in A549 cells. Fe2O3 nanoparticle also increased F2-isoprostanes level, but was not significant. This implied that SiO2, CeO2, ZnO, and Fe2O3 nanoparticles can cause cell membrane damage due to the lipid peroxidation. To the best of our knowledge, this is the first report on the investigation of effects of cellular exposure to metal oxide and silica nanoparticles on the cellular F2-isoprostanes levels.  相似文献   
118.
An immunology-based in vivo screening regime was used to assess the potential pathogenicity of biotechnology-related microbes. Strains of Bacillus cereus (Bc), Bacillus subtilis (Bs), Bacillus thuringiensis (Bt), and Bt commercial products (CPs) were tested. Balb/c mice were endotracheally instilled with purified spores, diluted CP, or vegetative cells (VC) (live or dead). Exposed mice were evaluated for changes in behavioral and physical symptoms, bacterial clearance, pulmonary granulocytes, and pulmonary and circulatory pyrogenic cytokines (interleukins (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α), as well as acute phase biomarkers (fibrinogen and serum amyloid A). Except for some differences in clearance rates, no marked effects were observed in mice exposed to any spore at 106 or 107 colony forming units (cfu). In contrast, live Bc or Bt VCs (105 or 106?cfu) produced shock-like symptoms (lethargy, hunched appearance, ruffled fur, and respiratory distress), and 11–200-fold elevations in pyrogenic cytokines at 2-h post-exposure. In the study, 4-h effects included increased lethargy, ocular discharge, and 1.5–4-fold rise in circulatory acute phase markers, but no indications of recovery. Bs VC did not produce any changes in symptoms or biomarkers. After 2 or 4?h of exposure to dead VC, increases of only plasma IL-1β and TNF-α (4.6- and 12.4-fold, respectively) were observed. These findings demonstrate that purified spores produced no marked effects in mice compared to that of metabolically active bacteria. This early screening regime was successful in distinguishing the pathogenicity of the different Bacillus species, and might be useful for assessing the relative hazard potential of other biotechnology-related candidate strains.  相似文献   
119.
Marine organisms are continuously exposed to agents, both exogenous and endogenous, that damage DNA. Consequently, it is important to determine the ability of compounds to provide protection against damaging chemicals. The aim of this study was to evaluate the anti-genotoxic activity of crude aqueous extracts of Kappaphycus alvarezii (Rhodophyceae), collected from the Southeast coast of India. This study focused on possible anti-genotoxic potential of aqueous extract of K. alverazii to interfere with clastogenicity induced by mercury chloride (HgCl2) in marine fish, Therapon jarbua as measured by cytogenetic endpoints such as cell viability and comet assay. In the first set of experiments, fish were exposed to a single treatment of Hg at 0.125, 0.25, 0.5, 1, or 2?ppm along with controls. Mercury exposure produced significant DNA damage in all comet classes, maximum as >79% (Class 4) at 0.5, 1, and 2?ppm exposure in a time dependent manner. Algal extract did not induce genotoxicity when given alone and prevented Hg-induced genotoxicity. The algal extract reduction in genotoxicity was significant but not time- and concentration-dependent. Results suggested that under present experimental conditions, K. alvarezii extract exhibit potent anti-genotoxicity effects in this fish model; and thus these extracts may be recommended as a supplement in fish meal and may benefit humans ingesting Hg-contaminated fish.  相似文献   
120.
The post treatment of simulated tannery wastewater was evaluated in an electrochemical oxidation process under galvanostatic conditions. A continuous flow reactor divided by a cellulosic membrane consisted of Ti/SnO2–Sb anodes and iron cathodes was used. Central composite design and response surface methodology (RSM) were applied to investigate the effects of six operational parameters, namely initial concentration of total phenols (TPh), total chromium (TCr), total ammonia nitrogen (TAN), flow rate (Q), current intensity (I), and electrode surface area (A). Effectiveness of the innovative cellulosic membrane was proven by considerable pH variations in the anolyte and catholyte chambers. A faster removal rate was observed for TPh and TAN, followed by TCr. The treatment level was very sensitive to Q and I in the studied ranges. RSM showed the removal efficiencies of 78.14%, 63.42%, and 86.09% for TPh, TCr, and TAN, respectively, are achieved under optimal conditions with consumption of only 9.03 kWh m?3 electrical energy. Chlorinated compounds such as chloroform, 2,4-dichlorophenol, and chlorobenzene were detected as the degradation intermediates. According to the obtained results, electrolysis in the divided cell with cellulosic membrane is a practical, cost-effective method for advanced treatment of tannery effluents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号