首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   2篇
  国内免费   5篇
安全科学   1篇
废物处理   1篇
环保管理   3篇
综合类   9篇
基础理论   10篇
污染及防治   4篇
评价与监测   4篇
  2021年   2篇
  2020年   1篇
  2017年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2002年   3篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1992年   1篇
  1985年   1篇
排序方式: 共有32条查询结果,搜索用时 141 毫秒
21.
Abstract:  In large parts of North America and Europe, deer overabundance threatens forest plant diversity. Few researchers have examined its effects on invertebrate assemblages. In a natural experiment on Haida Gwaii (British Columbia, Canada), where Sitka black-tailed deer ( Odocoileus hemionus sitkensis ) were introduced, we compared islands with no deer, with deer for fewer than 20 years, and with deer for more than 50 years. We sampled invertebrates in three habitat categories: forest edge vegetation below the browse line, forest interior vegetation below the browse line, and forest interior litter. In forest edge vegetation, invertebrate abundance and species density decreased with increasing length of browsing history. In forest interior vegetation, decrease was significant only on islands with more than 50 years of browsing. Insect abundance in the vegetation decreased eightfold and species density sixfold on islands browsed for more than 50 years compared with islands without deer. Primary consumers were most affected. Invertebrates from the litter showed little or no variation related to browsing history. We attributed the difference between vegetation-dwelling and litter-dwelling invertebrates to differences in the effect of browsing on their habitat. In the layer below the browse line deer progressively removed the habitat. The extent of litter habitat was not affected, but its quality changed. We recommend more attention be given to the effect of overabundant ungulates on forest invertebrate conservation with a focus on edge and understory vegetation in addition to litter habitat.  相似文献   
22.
底栖动物对维持和稳定湖泊生态系统结构与功能具有重要作用.为了探明长期强人为干扰条件下底栖动物群落结构特征及其主要环境影响因子,本研究分别于2009年和2018年的4月和8月采集和分析了白洋淀8个区水体、沉积物和底栖动物样品.根据人为干扰程度的不同,将白洋淀分为重度干扰区(HD)、中度干扰区(MD)和轻度干扰区(LD),同时分析了3类生境的理化参数和底栖动物群落结构与多样性指数.研究结果表明:1就水体和沉积物理化参数而言,总磷(TP)、总氮(TN)、氨氮(NH4+)、硝酸盐(NO3-)、磷酸盐(PO43-)和沉积物总氮(TNs)、总磷(TPs)等理化参数在重度干扰区呈最高值;2就底栖动物群落组成而言,在重度干扰区底栖动物群落物种丰度、生物量、密度均最低,且优势种大多以水生昆虫为主;3就底栖动物群落多样性指数而言,2009年,白洋淀底栖动物群落Margalef丰富度指数D值(0.84)和Shannon-Wiener多样性指数H''值(1.13)均在中度干扰区最高,而Pielou均匀度指数J值(0.53)在轻度干扰区最高,这些指数均与沉积物总氮(TNs)呈显著负相关;2018年,D值(2.02)和H''值(2.21)在轻度干扰区中最高,而J值(0.84)在重度干扰区中最高,D值和H''值与水深(Water depth,WD)呈正相关关系,而与硝酸盐(NO3-)和总磷(TP)等呈负相关关系;4RDA分析结果表明,白洋淀底栖动物群落组成的主要环境影响因子在2009年为WD和pH,而在2018年为沉积物中总磷(TPs).2009-2018年,白洋淀底栖动物群落(主要影响因子从WD和pH变为沉积物总磷)和多样性指数(主要影响因子从TNs变为WD、TN、TP、NO3-、TNs等)的主要环境影响因子发生了显著变化.因此,针对主要环境影响因子的时间变化,在不同时期底栖动物群落的恢复需采取不同措施,本研究结果可为白洋淀生态修复提供理论和数据基础.  相似文献   
23.
综述了目前土壤生态毒理风险评价中常用的陆生无脊椎生物标志物,并对一些新的生物标志物作了简介。对目前研究的不足及今后需加强领域提出了建议。  相似文献   
24.
纳米科技的快速发展及纳米材料的广泛应用导致纳米材料不可避免地释放到环境中。进入环境中的纳米材料可能会对环境中的许多物种,包括从微生物到更复杂的生物体及生物种群和群落,产生毒性作用,甚至会通过食物链传递,给生态系统带来潜在的危险。因此,纳米生态毒理学的研究引起了人们的高度重视。系统评述了纳米生态毒性的主要影响因素,以及纳米材料对单一生物(微生物、藻类、大型溞和鱼)、经食物链传递、在种群和群落水平上的生物毒性效应和纳米材料与环境中其他污染物结合产生的复合效应,最后在总结目前研究现状的基础之上,提出了纳米材料生态毒性效应还需深入研究的若干方面。  相似文献   
25.
Abstract: We tested the hypothesis that variation in the sensitivity of animals to habitat change is explained by ecological traits (life‐history traits, trophic level, and mobility). We measured the sensitivity of insectivorous mammals (shrews and bats) and their prey (arthropods active at the soil surface and nocturnal aerial arthropods) to three aspects of agricultural intensification in a matched‐pair experimental design: increased use of agrochemicals (comparison of organic and conventional cereal crops, with pairing for the size of the boundary hedge), change in grassland management from hay to silage (with pairing for the size of the boundary hedge), and increased field size due to hedgerow loss (with boundary‐field comparisons as a proxy). We assessed the sensitivity of taxa as the difference in their relative abundance between pairs of high‐ and low‐intensity sites for each aspect of agricultural intensification. We used phylogenetically informed analyses to explore cross‐species relationships between our measures of sensitivity and seven ecological traits of animals (e.g., trophic level, mobility, and reproductive rate). Several traits were related to the sensitivity of animals to agricultural intensification. These traits were mainly associated with fast life histories (high reproductive output and low trophic level) and low mobility. Trophic level of adults was related to sensitivity to habitat change for all three aspects of agricultural intensification, but the direction of the relationship differed between the three aspects of intensification. The significance of the relationship between other ecological traits and sensitivity to intensification varied for the three aspects of agricultural intensification. Our results show that some ecological traits can be used to preselect taxa that are predicted to be sensitive to habitat change, and their sensitivity can be tested empirically for use as biotic indicator taxa. Understanding which traits are related to sensitivity to habitat change is vital because sensitivity is important in determining a taxon's ability to survive in dynamic environments.  相似文献   
26.
The lower Passaic River in northern New Jersey (USA) has been heavily industrialized since the mid-nineteenth century and its shoreline and aquatic habitats degraded or destroyed. Similar to other urban systems, Passaic River sediments, both surface and buried, historically have contained elevated levels of numerous contaminants that may pose risks to ecological receptors and humans. Sediments from 15 stations in the lower Passaic River and 3 reference stations in the Mullica River in southern New Jersey were sampled in 1999 and characterized for chemical contamination, toxicity, and impairment of the benthic community. The objective of this study was to determine the incidence, degree, and nature of degraded surficial sediments in the area to support subsequent plans for restoration of the system. Results demonstrated that Passaic River sediments had concentrations of many organic and inorganic contaminants at levels significantly greater than the reference area and effect-based guidelines. Sediments were toxic to marine amphipods at 11 stations and the benthic assemblages were impaired relative to the reference area at all stations. The weight-of-evidence of this sediment quality triad (SQT) assessment indicates that impacts from multiple contaminants are occurring throughout the lower Passaic River and, that these impacts must be evaluated further and addressed as part of ongoing restoration initiatives for the river.  相似文献   
27.
The risk of chemicals for ecological communities is often forecast with species sensitivity distributions (SSDs) which are used to predict the concentration which will protect p% of species (PCp value). However, at the PCp value, species richness in nature would not necessary be p% less than at uncontaminated sites. The definition of species richness inherent to SSDs (contaminant category richness) contrasts with species richness typically measured in most field studies (point richness). We determine, for salinity in eastern Australia, whether these definitions of stream macroinvertebrate species richness are commensurable. There were strong relationships (r2 ≥ 0.87) between mean point species, family and Ephemeroptera, Trichoptera and Plecoptera species richness and their respective contamination category richness. Despite differences in the definition of richness used by SSDs and field biomonitoring, their results in terms of relative species loss from salinity in south-east Australia are similar. We conclude that in our system both definitions are commensurable.  相似文献   
28.
The abundance of nearly one-quarter of the world's shorebird species is declining. At the same time, the number of non-native species in coastal ecosystems is increasing rapidly. In some cases, non-native species may affect negatively the abundance and diversity of shorebird prey species. We conducted an experimental study of the effects of the introduced European green crab (Carcinus maenas) on prey consumption by wintering Dunlin (Calidris alpina) in a central California estuary. We placed green crabs and Dunlin sequentially in field enclosures and measured changes in density of benthic invertebrate prey (e.g. polychaetes and small clams), Dunlin biomass, and gut contents of both Dunlin and crabs and observed foraging behavior of Dunlin. Green crabs significantly affected Dunlin foraging success through both direct and indirect multitrophic linkages. In enclosures with high densities of green crabs, crab foraging reduced the availability of polychaetes, and Dunlin consumed significantly fewer polychaetes compared with Dunlin in enclosures without crabs. High densities of green crabs were also associated with increased availability of small clams. Dunlin consumed significantly more small clams compared with Dunlin in enclosures without crabs. In our literature survey of studies of effects of non-native invasive species on shorebirds, we found three prior experiments that addressed the effect of non-native invasive species on shorebirds. Results of two of these studies showed positive direct effects of non-native invertebrates on shorebirds, 1 showed negative direct effects of a non-native plant on shorebirds through habitat conversion, and none showed indirect effects of non-native invertebrates. We suggest future management of shorebirds explicitly examine how non-native marine species, particularly invertebrates, directly and indirectly affect shorebirds.  相似文献   
29.
In the Elkhorn River, burrows, tubes, and sediment mounds created by invertebrate bioturbation were observed in the exposed streambed and commonly concentrated on the fine-sediment patches, which consist of silt, clay, and organic matter. These invertebrate activities could loosen the thin layer of clogging sediments and result in an increase of pore size in the sediments, leading to greater vertical hydraulic conductivity of the streambed (K v ). The measurements of the vertical hydraulic gradient across the submerged streambed show that vertical flux in the hyporheic zone can alter directions (upward versus downward) for two locations only a few meters apart. In situ permeameter tests show that streambed K v in the upper sediment layer is much higher than that in the lower sediment layer, and the calculated K v in the submerged streambed is consistently greater than that in the clogged sediments around the shorelines of the sand bars. Moreover, a phenomenon of gas bubble release at the water-sediment interface from the subsurface sediments was observed in the groundwater seepage zone where flow velocity is extremely small. The bursting of gas bubbles can potentially break the thin clogging layer of sediments and enhance the vertical hydraulic conductivity of the streambed.  相似文献   
30.
Biologically active carbon (BAC) system was set up in a water plant of South China during January to December 2007,to study the invertebrate community characteristics of BAC filter.Thirty-seven invertebrate species were found,of which 28 belonging to rotifers.Filter operation could lead to an output of invertebrates in high abundances with the filtrate,and the maximum density could reach 5608 individuals/m 3.Average abundances in the effluent water increased in 27-33 folds in comparison to the influent water during the sampling period.Invertebrate community succession had the following trend:filter-feeding animals → small benthic invertebrates → large benthic and resistant invertebrates.Abundances of large-sized invertebrates (copepod adult and oligochaete) at bigger-media column were significantly higher than that at small-media column.The results implied the abundant species diversity of invertebrate in BAC filter.The relationship between invertebrate and biofilm still remain to be studied in detail.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号