首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   463篇
  免费   67篇
  国内免费   120篇
安全科学   155篇
废物处理   15篇
环保管理   61篇
综合类   241篇
基础理论   68篇
环境理论   1篇
污染及防治   52篇
评价与监测   12篇
社会与环境   33篇
灾害及防治   12篇
  2024年   4篇
  2023年   9篇
  2022年   20篇
  2021年   21篇
  2020年   18篇
  2019年   30篇
  2018年   23篇
  2017年   19篇
  2016年   29篇
  2015年   34篇
  2014年   24篇
  2013年   36篇
  2012年   53篇
  2011年   40篇
  2010年   33篇
  2009年   28篇
  2008年   20篇
  2007年   26篇
  2006年   33篇
  2005年   18篇
  2004年   8篇
  2003年   18篇
  2002年   8篇
  2001年   12篇
  2000年   7篇
  1999年   8篇
  1998年   8篇
  1997年   11篇
  1996年   6篇
  1995年   10篇
  1994年   6篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1982年   1篇
  1979年   2篇
  1978年   2篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1970年   1篇
排序方式: 共有650条查询结果,搜索用时 15 毫秒
41.
ABSTRACT: The goal of this research was to develop a methodology for modeling a bioinfiltration best management practice (BMP) built in a dormitory area on the campus of Villanova University in Pennsylvania. The objectives were to quantify the behavior of the BMP through the different seasons and rainfall events; better understand the physical processes governing the system's behavior; and develop design criteria. The BMP was constructed in 2001 by excavating within an existing traffic island, backfilling with a sand/soil mixture, and planting with salt tolerant grasses and shrubs native to the Atlantic shore. It receives runoff from the asphalt (0.26 hectare) and turf (0.27 hectare) surfaces of the watershed. Monitoring supported by the hydrologic model shows that the facility infiltrates a significant fraction of the annual precipitation, substantially reducing the delivery of nonpoint source pollution and erosive surges downstream. A hydrologic model was developed using HEC‐HMS to represent the site and the BMP using Green‐Ampt and kinematic wave methods. Instruments allow comparison of the modeled and measured water budget parameters. The model, incorporating seasonally variable parameters, predicts the volumes infiltrated and bypassed by the BMP, confirming the applicability of the selected methods for the analysis of bioinfiltration BMPs.  相似文献   
42.
The basic theories and fundamental assumptions usually employed in the solution of unsteady groundwater flow problems are reviewed critically. The best known method of analysis for such problems is based on the Dupuit-Forchheimer approximation and leads to a nonlinear parabolic differential equation which is generally solved by linearization or numerical methods. The accuracy of the solution to this equation can be improved by use of a different approach which does not employ the Dupuit Forchheimer assumption, but rather is based on a semi-numerical solution of the Laplace equation for quasi-steady conditions. The actual unsteady process is replaced by a sequence of steady-state conditions, and it is assumed that the actual unsteady flow characteristics during a short time interval can be approximated by those associated with “average” steady state flow. The Laplace equation is solved by a semi-discretization method according to which the horizontal coordinate is divided into subintervals, while the vertical coordinate is maintained continuous. The proposed method is applied to a typical tile drainage problem, and, based on a comparison of calculated results with experimental data, the method is evaluated and practical conclusions regarding its applicability are advanced.  相似文献   
43.
A modified transient version of the Streeter-Phelps model along with the energy balance equation is employed to analyze the effects of waste heat discharge from power plants on stream water quality. Analysis is also made to examine the effects of the upstream water quality and stream velocity on the downstream DO concentration level. The resulting coupled nonlinear hyperbolic partial differential equations representing the energy, BOD and DO concentrations are solved by the method of characteristics and simulated on a digital computer. Final numerical results indicate that the allowable quantity of thermal discharge does heavily depend on the upstream quality.  相似文献   
44.
ABSTRACT: Extension of basic step methods of backwater computation to reaches of finite length is examined. Accuracies of commonly accepted hydraulic loss equations under particular water surface profile conditions are compared. Simulation of energy lines within a reach by parabolic curves is found to minimize error provided orientation of the axis of the parabola is selected in accordance with prevailing hydraulic conditions. Theoretical basis for an index reach length beyond which single-step computation from end to end of the reach must be in error is developed. Reduction of this reach length by suitable factors tailored to hydraulic conditions yields a mathematically defined allowable reach length for backwater computation. When reach length does not exceed this allowable reach length, no significant error may be detected. Automatic insertion of synthetic cross sections interpolated between surveyed cross sections when these are inadvertently spaced too far apart enables computation to proceed. This device is error-free for prismatic channls but may introduce error for irregular natural channels. Preliminary trials indicate that results so obtained may be accepted provided the fall in the original reach does not exceed from one to two feet. When this is exceeded, additional cross sections should be surveyed.  相似文献   
45.
ABSTRACT: A sediment routing technique was developed to route sediment yield from small watersheds through streams and valleys to the outlet of large watersheds. The technique is based on the modified universal sol loss equation and a first order decay function of travel time and particle size. Deposition is dependent upon settling velocities of sediment particles, travel time, and the amount of sediment in suspension. Sediment routing increases sediment yield prediction accuracy and allows determination of subwatershed contributions to the total sediment yield. Also, the locations and amounts of floodplain scour and deposition can be predicted. Another advantage of sediment routing is that measured sediment yield data are not required. The procedure performed satisfactorily in test routings on two Texas blackland watersheds Sediment routing will be useful in flood control evaluation, reservoir and channel design, water quality calculations, environmental impact assessment, and land-use planning.  相似文献   
46.
ABSTRACT: Deep percolation rates are normally estimated from a water balance. Results are presented of a study undertaken to evaluate three alternative methods of estimating percolation below the root zone when knowledge about the history of applied water and evapotranspiration are not available. The alternative methods are: 1) use of Darcy's equation to calculate deep percolation rate; 2) measurement of the soil temperature prof and calculation of the deep percolation rate from the shape of the temperature depth curve; and 3) measurement of the tritium concentration in the soil water and its relationship to the history of the tritium concentration in rainfall. At the principal study site, the Darcy velocity of flow ranged from 9 cm per year determined by the temperature method, to 40 cm per year determined by the tritium method. Darcy's equation to calculate seepage rates resulted in an estimation of deep seepage of 18 cm per year. An average deep percolation rate at the principal study site of 22 cm per year was determined using the average of all three methods. Results for other sites based on the temperature method indicated a lower seepage rate.  相似文献   
47.
Abstract

Chemical transport in soil is a major factor influencing soil and water contamination. Four soils and turfgrass thatch, representing a wide range of organic carbon OC content were studied to determine sorption Kd and Kf parameters for the insecticides chlorpyrifos and fonofos. The batch equilibrium method was used. The concentration of insecticide was measured in the solution as well as in the solid phase to determine the most accurate sorption data. Four soils and thatch were equilibrated for 24 h at 22 ± 1OC with aqueous insecticide solutions. Four concentrations of the insecticides, each <50% of their respective water solubilities, were selected for the experiments. After extraction with an organic solvent, the concentration of insecticides in the aqueous solution was determined by gas liquid chromatography using electron capture detection for chlorpyrifos, and nitrogen/phosphorus detection for fonofos. Data obtained were fitted to the log and simple linear form of the Freundlich equation. Mass balance Freundlich isotherm exponents n ranged between 0.82 and 0.93 for chlorpyrifos. 0.82 and 1.21 for fonofos, with r2 ≥ 0.97. Koc (percent of organic carbon %OC normalized Sorption coefficient) values were calculated by using experimentally developed Kd and Kf coefficients in relation to OC levels from 0.29 to 34.85%. Kd and Kf coefficients of both insecticides were positively correlated with OC (r2 ≥ 0.96). organic matter OM (r2 0.96), and cation exchange capacity CEC (r2 ≥ 0.90).  相似文献   
48.
从皮革铬鞣、复鞣污泥等处分离、纯化出4株菌株TP、XB、MY和TQ,采用海藻酸钠悬滴法并添加膨润土制成微生物固定化吸附剂,研究该吸附剂对低质量浓度Cr3+的吸附特性。结果表明,4种固定化颗粒对低质量浓度Cr3+有较好的吸附作用。实验室条件下,当吸附温度为30℃时,6 h后固定化吸附剂进入缓慢吸附和平衡吸附阶段。吸附等温曲线拟合研究表明,不同温度下吸附剂适合不同的等温模型。4种微生物吸附剂均与Lagrange拟二级动力学模型拟合最佳,且吸附量从高到低为TQ、TP、XB、MY。颗粒内扩散模型研究表明,20℃下XB和MY对Cr3+的吸附分为快速吸附和缓慢吸附阶段;30℃和40℃下固定化颗粒均呈现表面吸附—缓慢吸附—平衡吸附过程。热力学研究表明,吸附反应均属于自发进行的吸热过程,并且均是化学吸附。  相似文献   
49.
In order to find effective measures to control diatom blooms, a better understanding of the physiological characteristics of nutrient uptake in diatoms is needed. A study of P and Si-uptake kinetics for diatom species from two light regimes was conducted at low (LL), moderate (ML) and high light intensities (HL) (2, 25 and 80 μmol photons/(m2·sec)), respectively. The results showed that P uptake of diatoms was heavily influenced by historic light regimes. P affinity changed with growth and photosynthetic activity. The lowest half saturation constant for P uptake (Km(P)) was under HL for high-light adapted diatoms while the lowest half-saturation constant for low-light adapted diatoms was observed under LL. The Si half-saturation constant (Km(Si)) increased with increasing light intensities for pennate diatoms but decreased for centric diatoms. Diatom volumes were correlated with the maximum Si uptake rates (Vm(Si)) at HL and Km(Si) at ML and HL for six diatom species. Our results imply that when we assess the development of diatom blooms we should consider light intensity and cell volume in addition to ambient Si or P concentration. The relationship between light intensity and P-uptake suggests that we can find suitable methods to control diatom blooms on the basis of reducing phytoplankton activity of P-uptake and photosynthesis simultaneously.  相似文献   
50.
The liquid nitrogen adsorption method was used to characterize the pore structure of non-cohesive coal in the 061,404 working face of the Lingxin coal mine. The amount of specific surface area of micropores in the sample continuously rose as particle sizes reduced. The volumetric method was used to measure the CO isothermal adsorption curves of three samples (sample I, 0.425–0.25 mm, sample II, 0.18–0.25 mm, and sample III, 0.15–0.18 mm). The experimental results were fitted by the Langmuir model. According to the experimental results, it was conducive to CO adsorption with the conditions of high pressure and low-temperature. The decrease in grain diameter increased the number and volume of micropores in the sample, which improved the adsorption capacity of the sample. In addition, according to the adsorption data, the CO adsorption thermodynamics of three samples were analyzed, including surface potential (Ω), Gibbs free energy change (ΔG) and entropy change (ΔS). The results demonstrated that CO adsorption by coal was a spontaneous process. Sample III has the most substantial adsorption capacity, whereas the sample I has the weakest adsorption capacity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号