首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1403篇
  免费   345篇
  国内免费   11篇
安全科学   20篇
废物处理   3篇
环保管理   665篇
综合类   750篇
基础理论   121篇
污染及防治   21篇
评价与监测   59篇
社会与环境   100篇
灾害及防治   20篇
  2025年   5篇
  2024年   26篇
  2023年   32篇
  2022年   44篇
  2021年   58篇
  2020年   55篇
  2019年   65篇
  2018年   38篇
  2017年   57篇
  2016年   57篇
  2015年   82篇
  2014年   49篇
  2013年   75篇
  2012年   89篇
  2011年   82篇
  2010年   62篇
  2009年   81篇
  2008年   60篇
  2007年   67篇
  2006年   90篇
  2005年   87篇
  2004年   57篇
  2003年   69篇
  2002年   63篇
  2001年   38篇
  2000年   44篇
  1999年   28篇
  1998年   22篇
  1997年   20篇
  1996年   17篇
  1995年   18篇
  1994年   11篇
  1993年   9篇
  1992年   7篇
  1991年   6篇
  1990年   9篇
  1989年   6篇
  1988年   6篇
  1987年   8篇
  1984年   5篇
  1983年   7篇
  1982年   5篇
  1981年   3篇
  1980年   6篇
  1979年   4篇
  1977年   4篇
  1976年   3篇
  1975年   4篇
  1974年   6篇
  1971年   4篇
排序方式: 共有1759条查询结果,搜索用时 15 毫秒
1.
选取大河和巴关河流域2018—2022年水质监测数据,运用单因子评价法、Spearman秩相关系数法、综合污染指数法和主成分分析法,对流域水质状况、变化趋势及主要污染物特征进行综合评价分析。结果表明:2018—2022年,大河流域水质未达到地表水Ⅲ类标准;流域整体综合污染指数超过了1,为重污染,下游污染程度较重;营养指标和有机污染物指标存在显著正相关。巴关河流域水质达到了地表水Ⅲ类标准;流域整体综合污染指数未超过1,为中污染,上游污染程度较重;营养指标、有机污染物指标和重金属指标等均呈现出不同程度的相关性。巴关河流域水质总体优于大河流域。TP、NH3-N、CODMn、CODCr和BOD5是影响大河流域和巴关河流域水质的主要因子,均属于有机型及富营养化污染指标,主要来自生活源和农业源。建议选择适宜的评价方法开展系统性小流域污染溯源,分河段有针对性地开展小流域水环境治理。  相似文献   
2.
ABSTRACT: Natural rates of surface erosion on forested granitic soils in central Idaho were measured in 40 m2 bordered erosion plots over a period of four years. In addition, we measured a variety of site variables, soil properties, and summer rainstorm intensities in order to relate erosion rates to site attributes. Median winter erosion rates are approximately twice summer period rates, however mean summer rates are nearly twice winter rates because of infrequent high erosion caused by summer rainstorms. Regression equation models and regression tree models were constructed to explore relationships between erosion and factors that control erosion rates. Ground cover is the single factor that has the greatest influence on erosion rates during both summer and winter periods. Rainstorm intensity (erosivity index) strongly influences summer erosion rates, even on soils with high ground cover percentages. Few summer storms were of sufficient duration and intensity to cause rilling on the plots, and the data set was too small to elucidate differences in rill vs. interrill erosion. The regression tree models are relatively less biased than the regression equations developed, and explained 70 and 84 percent of the variability in summer and winter erosion rates, respectively.  相似文献   
3.
    
ABSTRACT: In Yegua Creek, a principal tributary of the Brazos River in Texas, surveys of a 19 km channel reach downstream of Somerville Dam show that channel capacity decreased by an average of 65 percent in a 34 year period following dam closure. The decrease corresponds with an approximately 85 percent reduction in annual flood peaks. Channel depth has changed the most, decreasing by an average of 61 percent. Channel width remained stable with an average decrease of only 9 percent, reflecting cohesive bank materials along with the growth of riparian vegetation resulting from increased low flows during dry summer months. Although large changes in stream channel geometry are not uncommon downstream of dams, such pronounced reductions in channel capacity could have long‐term implications for sediment delivery through the system.  相似文献   
4.
    
ABSTRACT: Historical trends in annual discharge characteristics were evaluated for 11 gauging stations located throughout Iowa. Discharge records from nine eight‐digit hydrologic unit code (HUC‐8) watersheds were examined for the period 1940 to 2000, whereas data for two larger river systems (Cedar and Des Moines Rivers) were examined for a longer period of record (1903 to 2000). In nearly all watersheds evaluated, annual base flow, annual minimum flow, and the annual base flow percentage significantly increased over time. Some rivers also exhibited increasing trends in total annual discharge, whereas only the Maquoketa River had significantly decreased annual maximum flows. Regression of stream discharge versus precipitation indicated that more precipitation is being routed into streams as base flow than as storm flow in the second half of the 20th Century. Reasons for the observed stream flow trends are hypothesized to include improved conservation practices, greater artificial drainage, increasing row crop production, and channel incision. Each of these reasons is consistent with the observed trends, and all are likely responsible to some degree in most watersheds.  相似文献   
5.
    
Rapid land development is raising concern regarding the ability of urbanizing watersheds to sustain adequate base flow during periods of drought. Long term streamflow records from unregulated watersheds of the lower to middle Delaware River basin are examined to evaluate the impact of urbanization and imperviousness on base flow. Trends in annual base flow volumes, seven‐day low flows, and runoff ratios are determined for six urbanizing watersheds and four reference watersheds across three distinct physiographic regions. Hydrograph separation is used to determine annual base flow and stormflow volumes, and nonparametric trend tests are conducted on the resulting time series. Of the watersheds examined, the expected effects of declining base flow volumes and seven‐day low flows and increasing stormflows are seen in only one watershed that is approximately 20 percent impervious and has been subject to a net water export over the past 15 years. Both interbasin transfers and hydrologic mechanisms are invoked to explain these results. The results show that increases in impervious area may not result in measurable reductions in base flow at the watershed scale.  相似文献   
6.
    
ABSTRACT: Unsustainable withdrawals from regional aquifers have resulted in adverse impacts considerable distances from the point locations of supply wells. In one area of the southeastern (SE) Coastal Plain, conservative estimates for repair/replacement of some residential wells damaged or destroyed by unsustainable yield from the Floridan aquifer system exceeded $4 million. However, a comprehensive assessment of damage/economic loss to private property and public resources due to unsustainable yield from that regional karst aquifer has not been made. Uncalculated direct costs to home‐owners from damage attributed to those withdrawals are associated with destruction of homes from increased sinkhole formation, devalued waterfront property, and removal of diseased and dead trees. Examples of other uncalculated economic burdens resulting from unsustainable aquifer yield in the SE Coastal Plain include: (1) irreversible damage to the aquifer matrix and concomitant increased potential for groundwater contamination, (2) large‐scale wildfires with subsequent degradation of air quality, debilitation of transportation corridors, and destruction of timber, wildlife habitat and property, and (3) destruction of “protected” natural areas. This paper provides a general background of the regional Floridan aquifer system's karst characteristics, examples of known impacts resulting from ground water mining in the SE Coastal Plain, and examples of additional damage that may be related to unsustainable yield from the Upper Floridan aquifer. Costs of these impacts have not been calculated and are not reflected in the price users pay for ground water. Evidence suggests that the classic watershed management approach must be revised in areas with mined regional karst aquifers to include impacts of induced recharge from the surficial aquifer, and subsurface inter‐basin flow. Likewise, associated impacts to surface water and interrelated systems must be calculated. The true cost of groundwater mining to this and future generations should be determined using a multidisciplinary approach.  相似文献   
7.
    
ABSTRACT: This paper explores a range of forest hydrology issues and identifies my concepts of the field's most pressing research needs. I extend the topic to include teaching and education in the broader sense because current teaching is usually part of the researcher's portfolio and because education involves that of both the research scientist and a broader audience. I consider the primary research, education, and service roles of the forest hydrologist also within a range of domains or, as I prefer to identify them, scales: (1) the molecular or pore level; (2) hydrological process; (3) watershed function; (4) global considerations, and (5) the human dimension which, while not actually a scale itself, embraces, is important to, and is affected by the first four. All are topics screaming for attention by researchers, educators, and practitioners. I shall here focus on the middle three.  相似文献   
8.
Payne, Scott M. and William W. Woessner, 2010. An Aquifer Classification System and Geographical Information System-Based Analysis Tool for Watershed Managers in the Western U.S. Journal of the American Water Resources Association (JAWRA) 46(5):1003-1023. DOI: 10.1111/j.1752-1688.2010.00472.x Abstract: Aquifers and groundwater systems can be classified using a variety of independent methods to characterize geologic and hydraulic properties, the degree of connection with surface water, and geochemical conditions. In light of a growing global demand for water, an approach for classifying groundwater systems at the watershed scale is needed. A comprehensive classification system is proposed that combines recognized methods and new approaches. The purpose of classification is to provide groundwater professionals, policy makers, and watershed managers with a widely applicable and repeatable system that reduces sometimes cumbersome complex databases and analyzes to straightforward terminology and graphical representations. The proposed classification system uses basin geology, aquifer productivity, water quality, and the degree of groundwater/surface water connection as classification criteria. The approach is based on literature values, reference databases, and fundamental hydrologic and hydrogeologic principles. The proposed classification system treats dataset completeness as a variable and includes a tiered assessment protocol that depends on the quality and quantity of data. In addition, it assembles and catalogs groundwater information using a consistent set of nomenclature. It is designed to analyze and display results using Geographical Information System mapping tools.  相似文献   
9.
    
ABSTRACT: Forces driving the initiation of watershed management activities in Alabama have ranged from top-down, agency-led initiatives to bottom-up, citizen-led initiatives. A number of watershed projects in Alabama were examined including three NPS projects funded by U.S. EPA grants and a more comprehensive locally-initiated watershed management authority. Watershed projects were categorized into four different models. Factors which produced significant differences in the development and utilization of social capital and local capacities for watershed management were investigated. The success of watershed management initiatives was examined qualitatively and appears to correlate with a number of social factors. These factors include the extent of stakeholder involvement, the availability of social capital in the watershed, and the presence of a real or perceived water resource concern or problem. Both short term project success and the longer term prognosis for continued watershed management activities seems to depend most upon the amount of social capital in the watershed. Two major changes in resource management programs and organizations could lead to increased focus on and support for local watershed management initiatives. These are reorganization of resource management agencies around watershed units, and assignment of at least one staff person in each watershed unit to watershed management.  相似文献   
10.
    
ABSTRACT: Forest land managers are concerned about the effects of logging on soil erosion, streamflow, and water quality and are promoting the use of Best Management Practices (BMPs) to control impacts. To compare the effects of BMP implementation on streamwater quality, two of three small watersheds in Kentucky were harvested in 1983 and 1984, one with BMPs, the other without BMPs. There was no effect of clearcutting on stream temperatures. Streamflow increased by 17.8 cm (123 percent) on the BMP watershed during the first 17 months after cutting and by 20.6 cm (138 percent) on the Non-BMP watershed. Water yields remained significantly elevated compared to the uncut watershed 8 years after harvesting. Suspended sediment flux was 14 and 30 times higher on the BMP and Non-BMP Watersheds, respectively, than on the uncut watershed during treatment, and 4 and 6.5 times higher in the 17 months after treatment was complete. Clearcutting resulted in increased concentrations of nitrate, and other nutrients compared to the uncut watershed, and concentrations were highest on the non-BMP watershed. Recovery of biotic control over nutrient losses occurred within three years of clearcutting. The streamside buffer strip was effective in reducing the impact of clearcutting on water yield and sediment flux.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号