首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  国内免费   6篇
安全科学   1篇
废物处理   2篇
综合类   7篇
基础理论   3篇
污染及防治   3篇
  2021年   1篇
  2020年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
排序方式: 共有16条查询结果,搜索用时 8 毫秒
11.
单歧藻富集和降解烷基酚类化合物的动力学过程   总被引:4,自引:2,他引:4  
选择单歧藻(Tolypothrix)研究其对苯酚、邻甲酚、间甲酚和4-辛基酚的生物富集过程及生物降解动力学。5d内单歧藻的生长经历了停滞期、对数期、静止期3个阶段;苯酚、邻甲酚、间甲酚、4-辛基酚的生物富集因子(BCF)平均值为4 59,3 87,5 82,292 48,与KOW值线性相关;单歧藻平均每天降解苯酚、邻甲酚、间甲酚、4-辛基酚分别为2 54,3 17,1 84,0 16mg L;用新近提出的二级反应动力学方程拟合其降解过程,得到它们的生物降解二次动力学常数K分别为0 386,0 500,0 254,0 023,K值由污染物的初始浓度决定并与分子量(M)线性相关,K=-0 003M+0 69,R=0 87,N=4。   相似文献   
12.
An acclimatized mixed microbial culture, predominantly Pseudomonas sp., was enriched from a sewage treatment plant, and its potential to simultaneously degrade mixtures of phenol and m-cresol was investigated during its growth in batch shake flasks. A 22 full factorial design with the two substrates at two di erent levels and di erent initial concentration ranges (low and high), was employed to carry out the biodegradation experiments. The substrates phenol and m-cresol were completely utilized within 21 h when present at low concentrations of 100 mg/L for each, and at high concentration of 600 mg/L for each, a maximum time of 187 h was observed for their removal. The biodegradation results also showed that the presence of phenol in low concentration range (100–300 mg/L) did not inhibit m-cresol biodegradation. Whereas the presence of m-cresol inhibited phenol biodegradation by the culture. Moreover, irrespective of the concentrations used, phenol was degraded preferentially and earlier than m-cresol. A sum kinetics model was used to describe the variation in the substrate specific degradation rates, which gave a high coe cient of determination value (R2 > 0.98) at the low concentration range of the substrates. From the estimated interaction parameter values obtained from this model, the inhibitory e ect of phenol on m-cresol degradation by the culture was found to be more pronounced compared to that of m-cresol on phenol. This study showed a good potential of the indigenous mixed culture in degrading mixed substrate of phenolics.  相似文献   
13.
为了高效处理工业含酚废水,研究了波茨坦短芽孢杆菌降解双底物体系过程中间甲酚和4-氯酚的相互作用及苯酚对间甲酚和4-氯酚降解的影响。结果表明,在间甲酚-4-氯酚体系中,4-氯酚会抑制间甲酚的降解,4-氯酚初始质量浓度为40 mg/L时,160 mg/L的间甲酚降解时间延长了8 h;同时间甲酚也抑制4-氯酚的降解,间甲酚初始质量浓度为40 mg/L时,160 mg/L的4-氯酚降解时间延长了4 h。采用Abuhamed动力学方程可以准确描述间甲酚-4-氯酚双底物降解体系中细胞生长的过程,动力学参数I_(1,2)=1.77,I_(2,1)=2.47,决定系数R~2=0.96。拟合参数表明,4-氯酚对间甲酚降解的抑制要强于间甲酚对4-氯酚降解的抑制。酶活测定表明,底物抑制作用增强时苯酚羟化酶和邻苯二酚1,2-双加氧酶的活性降低。添加低质量浓度的苯酚会对间甲酚和4-氯酚的降解产生促进作用,最佳促进质量浓度为200mg/L;添加300 mg/L以上的苯酚会对间甲酚和4-氯酚的降解产生抑制作用,抑制作用随苯酚质量浓度升高而增强。  相似文献   
14.
考察了在不同温度、pH值、摇床转速、氮源等环境和营养条件下,间甲酚降解菌Citrobacter farmeri对降解速率和降解过程中反应液的TOC值、紫外吸收及酶活的变化.结果表明,Citrobacter,farmeri降解间甲酚的最适温度为35℃,培养基初始pH值为6.5-8.0,摇床转速为170 r·min~(-1),无机氮比有机氮和氨态氮比硝态氮更利于Citrobacter farmeri对间甲酚的降解;当间甲酚初始浓度低于375mg·l~(-1)时,Citrobacter farmeri降解间甲酚符合零级动力学方程;间甲酚初始浓度约为60 mg·l~(-1)时约4 h完全降解,TOG的去除率8 h内可达到77%,之后几乎不变;Citrobacter farmeri可完全降解约600 mg·l~(-1)的间甲酚,表现出高效与强耐受能力的结合.对酶活的测定发现,儿茶酚1,2-双加氧酶有明显增大,初步判断Citrobacter farmeri以邻位裂解的途径对间甲酚进行降解.  相似文献   
15.
The phenol and m-cresol biodegradations were studied using the mutant strain CTM 2 obtained by the He-Ne laser irradiation on wild-type Candida tropicalis. The results showed that C. tropicalis exhibited the increased capacity of phenolic compounds degradation after laser irradiation. It could degrade 2600 mg/L phenol and 300 mg/L m-cresol by 5% inoculum concentration, respectively. In the dual-substrate biodegradation system, 0–500 mg/L phenol could accelerate m-cresol biodegradation, and 300 mg/L m-cresol could be completely utilized within 46 hr at the presence of 350 mg/L phenol. Besides, the maximum biodegradation of m-cresol could reach 350 mg/L with 80 mg/L phenol within 61 hr. Obviously, phenol, as a growth substrate, could promote CTM 2 to degrade m-cresol, and was always preferentially utilized as carbon source. Comparatively, low-concentration m-cresol could result in a great inhibition on phenol degradation. In addition, the kinetic behaviors of cell growth and substrate biodegradation were described by kinetic model proposed in our laboratory.  相似文献   
16.
Abstract

Cresols are chemical contaminants derivative from phenol which can be found in sewage sludge. However, little attention has been given to monitoring these compounds in environmental matrices in the literature. Thus, the objective of this study was to develop a simple method based on solid-liquid extraction with low temperature purification for determining three cresol isomers in sludge. The quantification of these compounds was performed by gas chromatography coupled to mass spectrometry with a previous derivatization step. After a detailed study, the cresol recovery was higher than 91%, with relative standard deviation lower than 12% and a limit of quantification of 20?μg kg?1. Linearity was achieved between 10 and 90?μg L?1 (R2 > 0.98) with the standard solutions prepared in matrix extracts due to the trouble caused by the matrix effect. The proposed method was applied with success for monitoring cresols in sewage sludge samples coming from six different wastewater treatment plants. All samples showed contamination by cresols, mainly p-cresol with values between 32.3 and 516.9?μg kg?1. The majority of the analyzed samples showed a total sum of the isomers higher than the maximum residue limit established by Brazilian legislation (160?μg kg?1).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号