首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   944篇
  免费   96篇
  国内免费   169篇
安全科学   6篇
废物处理   2篇
环保管理   621篇
综合类   371篇
基础理论   69篇
污染及防治   14篇
评价与监测   56篇
社会与环境   62篇
灾害及防治   8篇
  2024年   4篇
  2023年   13篇
  2022年   16篇
  2021年   29篇
  2020年   28篇
  2019年   35篇
  2018年   15篇
  2017年   34篇
  2016年   36篇
  2015年   55篇
  2014年   27篇
  2013年   65篇
  2012年   66篇
  2011年   52篇
  2010年   43篇
  2009年   54篇
  2008年   39篇
  2007年   44篇
  2006年   70篇
  2005年   48篇
  2004年   44篇
  2003年   56篇
  2002年   56篇
  2001年   31篇
  2000年   38篇
  1999年   26篇
  1998年   21篇
  1997年   19篇
  1996年   13篇
  1995年   16篇
  1994年   9篇
  1993年   7篇
  1992年   7篇
  1991年   6篇
  1990年   9篇
  1989年   6篇
  1988年   6篇
  1987年   8篇
  1984年   5篇
  1983年   7篇
  1982年   5篇
  1981年   3篇
  1980年   6篇
  1979年   4篇
  1977年   4篇
  1976年   2篇
  1975年   4篇
  1974年   6篇
  1971年   4篇
  1970年   2篇
排序方式: 共有1209条查询结果,搜索用时 0 毫秒
71.
Differences between scientist and policy-maker response types and times, or the “how” and “when” of action, constrain effective water resource management in suburbanizing watersheds. Policy-makers are often rushed to find a single policy that can be applied across an entire, homogeneous, geopolitical region, whereas scientists undertake multiyear research projects to appreciate the complex interactions occurring within heterogeneous catchments. As a result, watershed management is often practiced with science and policy out of synch. Meanwhile, development pressures in suburban watersheds create changes in the social and physical fabric and pose a moving target for science and policy. Recent and anticipated advances in the scientific understanding of urbanized catchment hydrology and pollutant transport suggest that management should become increasingly sensitive to spatial heterogeneities in watershed features, such as soil types, terrain slopes, and seasonal watertable profiles. Toward this end, policy-makers should encourage funding scientific research that characterizes the impacts of these watershed heterogeneities within a geopolitical zoning and development framework.  相似文献   
72.
A mathematical model simulates the cumulative volume of debris produced from brushland watersheds. Application of this model to a 176-km2 (0.678 = mi2) watershed along the southern flank of the Central San Gabriel Mountains permits assessment of expected debris production associated with alternative fire-management policies. The political implications of simulated debris production are evaluated through a conceptual model that links interest groups to particular successional stages in brushland watersheds by means of the resources claimed by each group. It is concluded that in theory, a rotation burn policy would provide benefits to more interest groups concerned about southern California's brushland watersheds than does the current fire exclusion policy.This research was supported by the College of Agriculture and Life Sciences, University of Wisconsin-Madison, and by the Office of Water Research and Technology, USDI, under the Allotment program of Public Law 88–379, as amended, and by the University of California. Water Resources Center, as a part of Office of Water Research and Technology Project No. A-058-CAL and Water Resources Center Project UCAL-WRC-499. Support was also provided by the California Agricultural Experiment Station, Berkeley, California.  相似文献   
73.
ABSTRACT: Analysis of a small urban watershed's flooding was undertaken to determine causes and solutions to this serious environmental hazard affecting University Circle, the cultural heart of Greater Cleveland. Doan Brook is a small, highly disturbed urban stream draining 11.3 square miles. Much of the stream coridor and associated park land is owned by the public. The upper watershed lies in the communities of Shaker Heights and Cleveland Heights who lease park land from Cleveland. Two 50-year floods seriously affected the Circle area in August 1975 generating over $1 million in damages. These events resulted from excessive rainfall triggering rapid earth movement of valley walls in the upper watershed, decreased basin lag time from the infilling of several small upland lakes, a seriously undersized stream channel and storm culvert (at University Circle), and complex institutional arrangements between the three communities in the watershed. Suggestions are presented for a methodology to resolve the technical aspects of the flooding problem.  相似文献   
74.
ABSTRACT: Critical design characteristics of ephermal runoff such as hydrograph rise time, duration, mean peak discharge, volume, peak-volume ratio, and maximum flood were related to physical basin parameters such as area, shape, slope, drainage density, basin relief, stream length, and combinations of these in intermontane watersheds representative of the Mexican Highland section of the Basin and Range Province. Parameters used were restricted to those easily obtainable from maps or aerial photographs. A parameter expressing basin shape and size was developed which proved to be as accurate a predictor as others used in existing prediction equations tested and was simpler and faster to derive. Simple prediction equations derived for hydrograph characteristics were all significant except for volume at the 5% level; three were significant at the 1% level. Relationships determined are applicable in semi-arid basins of the Southwest up to 60 square miles (155 km2) in area.  相似文献   
75.
ABSTRACT: Gaged watersheds can provide information as to geomorphic, and geologic influence on the spatial variability of rainfall-runoff relationships. However, correlations between raingages distributed throughout the basin, and stream discharge are influenced by both storm patterns and drainage basin characteristics. Factor analysis has been applied to rainfall-runoff relationship to isolate the storm pattern from a basin response factor. Comparing two periods of time separated by eight years reveals relative stability in the rainfall attenuation (basin response) factor, while storm patterns for the two periods of record are quite disparate.  相似文献   
76.
ABSTRACT: An extensive hammer seismic refraction survey was carried out in three contiguous watersheds (217, 89, and 190 acres) on a laccolith near Sturgis, South Dakota to test its utility in rugged mountain terrain. Isopachs (lines connecting points of equal mantle thickness), area-elevation curves (hypsometry), and structure contours were used together with drill cores, petrography, hydrographs, and soil information to interpret the nature and role of porous mantle in the waterflow behavior of the watersheds. Refraction profiles produced only one geologically meaningful seismic contrast within the loccolith. Drill cores indicated a shallow stony profile on a sheeted horizon terminating on isotropic crystalline rock impervious except for tight joints. Means of refraction and core interpretations were not statistically different. Apparent seismic discontinuities deeper within the bedrock lacked geological identity. Storm hydrographs and water yields are better related to soil type differences and porous mantle distribution than to average porous mantle depth. On the other hand, slope of flow-duration curves correlate with average porous mantle depth. Porous mantle isopachs also indicate that measured flow from each basin is total area flow. Thus, porous mantle isopachs and hypsometry, and soil type delineation are complimentary in our interpretation of watershed behavior.  相似文献   
77.
ABSTRACT: Soil moisture in two layers of a soil near Chickasha, Oklahoma, was simulated, using USDAHL-74 Model of Watershed Hydrology. Weekly values computed for both layers compared well with those observed during the 15-month period. Certain key parameters required adjustments in the model which illustrate the need for accurate input information. The experiment demonstrates that the model, which has previously given good results in continuous streamflow prediction on watersheds up to 100 square miles, can also compute soil moisture continuously at a site. This capability suggests other model uses, for example, in monitoring the disposition of applied chemicals.  相似文献   
78.
ABSTRACT: This paper explores a range of forest hydrology issues and identifies my concepts of the field's most pressing research needs. I extend the topic to include teaching and education in the broader sense because current teaching is usually part of the researcher's portfolio and because education involves that of both the research scientist and a broader audience. I consider the primary research, education, and service roles of the forest hydrologist also within a range of domains or, as I prefer to identify them, scales: (1) the molecular or pore level; (2) hydrological process; (3) watershed function; (4) global considerations, and (5) the human dimension which, while not actually a scale itself, embraces, is important to, and is affected by the first four. All are topics screaming for attention by researchers, educators, and practitioners. I shall here focus on the middle three.  相似文献   
79.
Waite, Ian R., Jonathan G. Kennen, Jason T. May, Larry R. Brown, Thomas F. Cuffney, Kimberly A. Jones, and James L. Orlando, 2012. Comparison of Stream Invertebrate Response Models for Bioassessment Metrics. Journal of the American Water Resources Association (JAWRA) 48(3): 570-583. DOI: 10.1111/j.1752-1688.2011.00632.x Abstract: We aggregated invertebrate data from various sources to assemble data for modeling in two ecoregions in Oregon and one in California. Our goal was to compare the performance of models developed using multiple linear regression (MLR) techniques with models developed using three relatively new techniques: classification and regression trees (CART), random forest (RF), and boosted regression trees (BRT). We used tolerance of taxa based on richness (RICHTOL) and ratio of observed to expected taxa (O/E) as response variables and land use/land cover as explanatory variables. Responses were generally linear; therefore, there was little improvement to the MLR models when compared to models using CART and RF. In general, the four modeling techniques (MLR, CART, RF, and BRT) consistently selected the same primary explanatory variables for each region. However, results from the BRT models showed significant improvement over the MLR models for each region; increases in R2 from 0.09 to 0.20. The O/E metric that was derived from models specifically calibrated for Oregon consistently had lower R2 values than RICHTOL for the two regions tested. Modeled O/E R2 values were between 0.06 and 0.10 lower for each of the four modeling methods applied in the Willamette Valley and were between 0.19 and 0.36 points lower for the Blue Mountains. As a result, BRT models may indeed represent a good alternative to MLR for modeling species distribution relative to environmental variables.  相似文献   
80.
A nutrient loss reduction strategy is necessary to guide the efforts of improving water quality downstream of an agricultural watershed. In this study, the effectiveness of two winter cover crops, namely cereal rye and annual ryegrass, is explored as a loss reduction strategy in a watershed that ultimately drains into a water supply reservoir. Using a coupled optimization-watershed model, optimal placements of the cover crops were identified that would result in the tradeoffs between nitrate-N losses reduction and adoption levels. Analysis of the 10%, 25%, 50%, and 75% adoption levels extracted from the optimal tradeoffs showed that the cover crop placements would provide annual nitrate-N loss reductions of 3.0%–3.7%, 7.8%–8.8%, 15%–17.5%, and 20.9%–24.3%, respectively. In addition, for the same adoption levels (i.e., 10%–75%), sediment (1.8%–17.7%), and total phosphorus losses (0.8%–8.6%) could be achieved. Results also indicate that implementing each cover crop on all croplands of the watershed could cause annual water yield reduction of at least 4.8%, with greater than 28% in the months of October and November. This could potentially be detrimental to the storage volume of the downstream reservoir, especially in drought years, if cover crops are adopted in most of the reservoir's drainage area. Evaluating water yield impacts, particularly in periods of low flows, is thus critical if cover crops are to be considered as best management practices in water supply watersheds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号