首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8157篇
  免费   574篇
  国内免费   278篇
安全科学   1626篇
废物处理   140篇
环保管理   3086篇
综合类   2142篇
基础理论   815篇
环境理论   10篇
污染及防治   213篇
评价与监测   338篇
社会与环境   357篇
灾害及防治   282篇
  2023年   86篇
  2022年   114篇
  2021年   182篇
  2020年   243篇
  2019年   192篇
  2018年   169篇
  2017年   224篇
  2016年   312篇
  2015年   257篇
  2014年   323篇
  2013年   468篇
  2012年   450篇
  2011年   576篇
  2010年   387篇
  2009年   498篇
  2008年   361篇
  2007年   476篇
  2006年   471篇
  2005年   365篇
  2004年   396篇
  2003年   297篇
  2002年   279篇
  2001年   273篇
  2000年   272篇
  1999年   206篇
  1998年   133篇
  1997年   135篇
  1996年   108篇
  1995年   106篇
  1994年   49篇
  1993年   62篇
  1992年   57篇
  1991年   47篇
  1990年   35篇
  1989年   27篇
  1988年   34篇
  1987年   33篇
  1986年   27篇
  1985年   23篇
  1984年   27篇
  1983年   17篇
  1982年   22篇
  1981年   18篇
  1980年   24篇
  1979年   33篇
  1978年   21篇
  1975年   14篇
  1973年   14篇
  1972年   16篇
  1971年   14篇
排序方式: 共有9009条查询结果,搜索用时 531 毫秒
401.
Ground and surface water selenium (Se) contamination is problematic throughout the world, leading to harmful impacts on aquatic life, wildlife, livestock, and humans. A groundwater reactive transport model was applied to a regional‐scale irrigated groundwater system in the Lower Arkansas River Basin in southeastern Colorado to identify management practices that remediate Se contamination. The system has levels of surface water and groundwater Se concentrations exceeding the respective chronic standard and guidelines. We evaluate potential solutions by combining the transport model with an assessment of the cost to employ those practices. We use a framework common in economics and engineering fields alike, the Pareto frontier, to show the impact of four different best management practices on the tradeoffs between Se and cost objectives. We then extend that analysis to include institutional constraints that affect the economic feasibility associated with each practice. Results indicate that although water‐reducing strategies have the greatest impact on Se, they are the hardest for farmers to implement given constraints common to western water rights institutions. Therefore, our analysis shows that estimating economic and environmental tradeoffs, as is typically done with a Pareto frontier, will not provide an accurate picture of choices available to farmers where institutional constraints should also be considered.  相似文献   
402.
A long‐standing “Digital Divide” in data representation exists between the preferred way of data access by the hydrology community and the common way of data archival by earth science data centers. Typically, in hydrology, earth surface features are expressed as discrete spatial objects (e.g., watersheds), and time‐varying data are contained in associated time series. Data in earth science archives, although stored as discrete values (of satellite swath pixels or geographical grids), represent continuous spatial fields, one file per time step. This Divide has been an obstacle, specifically, between the Consortium of Universities for the Advancement of Hydrologic Science, Inc. and NASA earth science data systems. In essence, the way data are archived is conceptually orthogonal to the desired method of access. Our recent work has shown an optimal method of bridging the Divide, by enabling operational access to long‐time series (e.g., 36 years of hourly data) of selected NASA datasets. These time series, which we have termed “data rods,” are pre‐generated or generated on‐the‐fly. This optimal solution was arrived at after extensive investigations of various approaches, including one based on “data curtains.” The on‐the‐fly generation of data rods uses “data cubes,” NASA Giovanni, and parallel processing. The optimal reorganization of NASA earth science data has significantly enhanced the access to and use of the data for the hydrology user community.  相似文献   
403.
Shared, trusted, timely data are essential elements for the cooperation needed to optimize economic, ecologic, and public safety concerns related to water. The Open Water Data Initiative (OWDI) will provide a fully scalable platform that can support a wide variety of data from many diverse providers. Many of these will be larger, well‐established, and trusted agencies with a history of providing well‐documented, standardized, and archive‐ready products. However, some potential partners may be smaller, distributed, and relatively unknown or untested as data providers. The data these partners will provide are valuable and can be used to fill in many data gaps, but can also be variable in quality or supplied in nonstandardized formats. They may also reflect the smaller partners' variable budgets and missions, be intermittent, or of unknown provenance. A challenge for the OWDI will be to convey the quality and the contextual “fitness” of data from providers other than the most trusted brands. This article reviews past and current methods for documenting data quality. Three case studies are provided that describe processes and pathways for effective data‐sharing and publication initiatives. They also illustrate how partners may work together to find a metadata reporting threshold that encourages participation while maintaining high data integrity. And lastly, potential governance is proposed that may assist smaller partners with short‐ and long‐term participation in the OWDI.  相似文献   
404.
The southeastern United States has undergone anthropogenic changes in landscape structure, with the potential to increase (e.g., urbanization) and decrease (e.g., reservoir construction) stream flashiness and flooding. Assessment of the outcome of such change can provide insight into the efficacy of current strategies and policies to manage water resources. We (1) examined trends in precipitation, floods, and stream flashiness and (2) assessed the relative influence of land cover and flow‐regulating features (e.g., best management practices and artificial water bodies) on stream flashiness from 1991 to 2013. We found mean annual precipitation decreased, which coincided with decreasing trends in floods. In contrast, stream flashiness, overall, showed an increasing trend during the period of study. However, upon closer examination, 20 watersheds showed stable stream flashiness, whereas 5 increased and 6 decreased in flashiness. Urban watersheds were among those that increased or decreased in flashiness. Watersheds that increased in stream flashiness gained more urban cover, lost more forested cover and had fewer best management practices installed than urban watersheds that decreased in stream flashiness. We found best management practices are more effective than artificial water bodies in regulating flashy floods. Flashiness index is a valuable and straightforward metric to characterize changes in streamflow and help to assess the efficacy of management interventions.  相似文献   
405.
Urban stormwater practices are individually diverse, but they are components of an overall urban watershed system. This study proposes a conceptual model of that system, including its component spatial areas, their arrangement along the flow route, and their associations with urban land uses and values. The model defines three spatial areas along the flow route which have evolved over time into their present forms: (1) the source area, which is arranged and furnished primarily or entirely for human use, accommodation, and comfort; (2) the perimeter area, where specialized stormwater facilities carry away source‐area runoff or buffer downstream areas from its impacts; and (3) the downstream area, which receives the discharges from the perimeter or directly from the source area. Each area presents a specific combination of stormwater features and human interactions, and excludes others. Considering stormwater flows and functions in the context of physical urban spaces brings into view the spaces’ urban structures and interacting agendas. This model allows practitioners to navigate conceptually through the system, and to focus appropriate objectives and structures on each project site.  相似文献   
406.
Mathematical programming models have been used to optimize the design and management of forest bioenergy supply chains. A deterministic mathematical model is beneficial for making optimum decisions; however, its applicability to real-world problems may be limited because it does not capture all the complexities, including uncertainties in the parameters, in the supply chain. In this paper, a combination of Monte Carlo Simulation and optimization model is used to evaluate the impact of uncertainty in biomass quality, availability and cost, and electricity prices on the supply chain of a forest biomass power plant. The optimization model is a deterministic mixed integer non-linear model with monthly time steps over a 1-year planning horizon. Variability in biomass quality, i.e. moisture content (MC) and higher heating value (HHV), based on the historical data of a real case study is studied in detail and fitted probability distributions are used in the model, while for electricity prices different scenarios are considered. The results show that the impact of variability in the MC on profit is higher than that of uncertainty in HHV. It is observed that the annual profit ranges between $13.3 million and $17.9 million in the presence of all possible uncertainties while its average is $15.5 million. Uncertainty in biomass availability and cost and electricity price results in the risks of having annual profit of less than $14 million and low monthly storage levels.  相似文献   
407.
We develop a landscape stewardship classification which distinguishes between farmers’ understanding of landscape stewardship, their landscape values, and land management actions. Forty semi-structured interviews were conducted with small-holder (<5 acres), medium-holders (5–100 acres), and large-holders (>100 acres) in South-West Devon, UK. Thematic analysis revealed four types of stewardship understandings: (1) an environmental frame which emphasized the farmers’ role in conserving or restoring wildlife; (2) a primary production frame which emphasized the farmers’ role in taking care of primary production assets; (3) a holistic frame focusing on farmers’ role as a conservationist, primary producer, and manager of a range of landscape values, and; (4) an instrumental frame focusing on the financial benefits associated with compliance with agri-environmental schemes. We compare the landscape values and land management actions that emerged across stewardship types, and discuss the global implications of the landscape stewardship classification for the engagement of farmers in landscape management.  相似文献   
408.
This study quantified the impact of bison and cattle grazing management practices on bare ground coverage at the watershed, riparian, and forested riparian scales within the Flint Hills ecoregion in Kansas. We tested for correlations between bare ground coverage and fluvial suspended sediment concentrations during base‐flow and storm‐flow events. We used remotely sensed imagery combined with field surveys to classify ground cover and quantify the presence of bare ground. Base‐flow water samples were collected bi‐monthly during rain‐free periods and 24 h following precipitation events. Storm‐flow water samples were collected on the rising limb of the hydrograph, using single‐stage automatic samplers. Ungrazed treatments contained the lowest coverage of bare ground at the watershed, riparian, and forested riparian scales. Bison treatments contained the highest coverage of bare ground at the watershed scale, while high‐density cattle treatments contained the highest coverage of bare ground at the riparian and forested riparian scales. In bison and cattle‐grazed treatments, a majority of bare ground was located near fence lines, watershed boundaries, and third‐ and fourth‐order stream segments. Inorganic sediment concentrations at base flow were best predicted by riparian bare ground coverage, while storm‐flow sediment concentrations were best predicted by watershed scale bare ground coverage.  相似文献   
409.
Generally, one expects evapotranspiration (ET) maps derived from optical/thermal Landsat and MODIS satellite imagery to improve decision support tools and lead to superior decisions regarding water resources management. However, there is lack of supportive evidence to accept or reject this expectation. We “benchmark” three existing hydrologic decision support tools with the following benchmarks: annual ET for the ET Toolbox developed by the United States Bureau of Reclamation, predicted rainfall‐runoff hydrographs for the Gridded Surface/Subsurface Hydrologic Analysis model developed by the U.S. Army Corps of Engineers, and the average annual groundwater recharge for the Distributed Parameter Watershed Model used by Daniel B. Stephens & Associates. The conclusion of this benchmark study is that the use of NASA/USGS optical/thermal satellite imagery can considerably improve hydrologic decision support tools compared to their traditional implementations. The benefits of improved decision making, resulting from more accurate results of hydrologic support systems using optical/thermal satellite imagery, should substantially exceed the costs for acquiring such imagery and implementing the remote sensing algorithms. In fact, the value of reduced error in estimating average annual groundwater recharge in the San Gabriel Mountains, California alone, in terms of value of water, may be as large as $1 billion, more than sufficient to pay for one new Landsat satellite.  相似文献   
410.
Sensors and enabling technologies are becoming increasingly important tools for water quality monitoring and associated water resource management decisions. In particular, nutrient sensors are of interest because of the well‐known adverse effects of nutrient enrichment on coastal hypoxia, harmful algal blooms, and impacts to human health. Accurate and timely information on nutrient concentrations and loads is integral to strategies designed to minimize risk to humans and manage the underlying drivers of water quality impairment. Using nitrate sensors as the primary example, we highlight the types of applications in freshwater and coastal environments that are likely to benefit from continuous, real‐time nutrient data. The concurrent emergence of new tools to integrate, manage, and share large datasets is critical to the successful use of nutrient sensors and has made it possible for the field of continuous monitoring to rapidly move forward. We highlight several near‐term opportunities for federal agencies, as well as the broader scientific and management community, that will help accelerate sensor development, build and leverage sites within a national network, and develop open data standards and data management protocols that are key to realizing the benefits of a large‐scale, integrated monitoring network. Investing in these opportunities will provide new information to guide management and policies designed to protect and restore our nation's water resources.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号