首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1506篇
  免费   172篇
  国内免费   419篇
安全科学   565篇
废物处理   74篇
环保管理   103篇
综合类   901篇
基础理论   106篇
污染及防治   194篇
评价与监测   110篇
社会与环境   17篇
灾害及防治   27篇
  2024年   6篇
  2023年   33篇
  2022年   52篇
  2021年   63篇
  2020年   80篇
  2019年   62篇
  2018年   64篇
  2017年   84篇
  2016年   96篇
  2015年   77篇
  2014年   64篇
  2013年   104篇
  2012年   115篇
  2011年   114篇
  2010年   66篇
  2009年   97篇
  2008年   68篇
  2007年   114篇
  2006年   98篇
  2005年   105篇
  2004年   62篇
  2003年   93篇
  2002年   73篇
  2001年   67篇
  2000年   60篇
  1999年   38篇
  1998年   45篇
  1997年   23篇
  1996年   27篇
  1995年   11篇
  1994年   9篇
  1993年   12篇
  1992年   6篇
  1991年   5篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
排序方式: 共有2097条查询结果,搜索用时 15 毫秒
91.
针对所设计的电磁浮动床除尘装置,为了掌握该装置的运行规律以及除尘效果,以铁磁颗粒为床料,通过实验分析了铁磁颗粒质量对床层高度的影响,以及风量和磁场强度等因素对床层高度和压强降的影响,并对风量和磁场强度与除尘效率的关系进行了研究,确定最佳运行条件:进口含尘气体浓度为20 g·m-3,磁场强度为300 Gs,风量为110 m3·h-1,除尘效率高达99.34%,为电磁浮动床用于高温除尘工艺奠定了基础。  相似文献   
92.
表面活性剂能够增强植物叶面滞尘能力,研究不同表面活性剂对植物滞尘能力的影响,对于利用植物防治粉尘污染有重要意义。以LAS、DTAB、AR和APG200为喷洒试剂,研究了8种植物吸附表面活性剂后滞留粉尘的重量、组分。结果表明,LAS浓度、植物种类、表面活性剂类型对滞尘量和面积比具有显著影响(P<0.05);表面活性剂能够有效提高植物滞尘能力,LAS、DTAB效果优于生物型AR、APG200,且测试叶面滞尘量的变化与叶面接触角无明显关系;LAS使除朴树外所有植物的滞尘能力增加的浓度为0.2 g/L,而对滞留粉尘组分改变较大的浓度为0.5 g/L;此外,表面活性剂能改变滞留粉尘的组分,但不具有明显的规律性,粉尘的遮光比变化趋势与叶面滞尘量基本相似。  相似文献   
93.
通过对浙江省工业烟粉尘排放总量和排放源现状进行分析,提出工业烟粉尘减排治理对策,对工业烟粉尘4个重点行业(水泥制造行业、火力发电行业、钢铁行业(包括炼钢、钢压延加工和黑色金属铸造行业)、纺织染整行业(包括棉印染精加工、化纤织物染整精加工和棉织造加工行业)排放源的烟粉尘减排途径和潜力进行分析测算,研究提出工业烟粉尘总量控制措施和建议。  相似文献   
94.
为了解决燃煤锅炉烟气中超细颗粒难以脱除的问题,基于流体动力学原理设计了一种超细颗粒聚并器,并在300 MW燃煤锅炉机组电除尘器的前置烟道中进行了实验研究。结果表明,聚并器内部存在超细颗粒之间以及超细颗粒与大颗粒之间的相互聚集行为,从而使超细颗粒数量显著减少。例如,对于粒径在2.65和10.48 μm以下的颗粒,其体积比例在聚并器出口分别减少了56.7%和62.3%,在电除尘器出口的粉尘浓度减少了26.34 mg/Nm3,这表明,基于流体动力学原理的聚并器对超细颗粒的聚并作用明显,具有良好的应用前景。  相似文献   
95.
冶金炉的铁水、钢水温度高,国内外多次发生冶金炉爆炸事故,但现阶段根据《重大危险源辨识》(GB18218-2000)和《关于开展重大危险源监督管理工作的指导意见》(安监管协调字[2004]56号文)还无法判定其是否为重大危险源.运用爆炸学、热学等方法,提出了判定冶金炉是否为重大危险源的理论与方法,并给出了判定高炉是否为重大危险源的临界有效容积,判定转炉、混铁炉是否为重大危险源的临界公称吨位,最后通过VB编程对冶金炉进行了爆炸事故后果模拟,为冶金企业提供一定的参考价值.  相似文献   
96.
甲烷-煤尘复合火焰的传播与温度特征   总被引:2,自引:0,他引:2  
为了揭示甲烷-煤尘复合体系的燃烧特征,利用高速摄像机、超细热电偶、显微镜头等对管道内甲烷-煤尘复合火焰的传播过程及其温度特征进行了试验研究.结果表明,随着煤尘浓度的增加,甲烷-煤尘复合火焰的最高温度及传播速度呈现先增大后减小的趋势; 对于甲烷-煤尘复合火焰,粒径较大的煤尘在较小的浓度达到最高温度,而粒径较小的煤尘则需要在较大的浓度达到最高温度.  相似文献   
97.
为了进一步了解相连装置中粉尘爆炸的火焰传播行为和压力发展,为该结构的安全防护设计提供有价值的信息,采用大型实验装置对相连容器中玉米淀粉/空气混合物爆炸时的火焰传播行为进行了实验研究,同时采用已开发的数值模型对实验进行仿真计算。实验表明:粉尘浓度的变化对粉尘爆炸的火焰传播行为有重要影响;在粉尘浓度很低的情况下,火焰仍然能够在管道中加速传播且爆炸发展的最终结果相当猛烈。数值模型采用欧拉-拉格朗日方法模拟两相流现象,通过求解非稳态的湍流两相反应流守恒方程对实验进行二维仿真,计算结果与实验结果符合性较好,表明该模型可以很好地应用于粉尘爆炸火焰传播的研究。  相似文献   
98.
除尘器对颗粒物的除尘效率与颗粒物的荷电量密切相关,PM2.5等细小颗粒物由于其荷电量不足而导致其吸收效率较低,对环境造成危害。为了增加粒子的荷电量,以粒子荷电原理为理论依据,从离子电流密度和通过电凝并扩大尘粒中位径2个方面研究了电除尘电源中交流电压分量对PM2.5等细小颗粒物荷电特性的影响,得出了电除尘器电源中交流电压分量可从以上2个方面提高装置对PM2.5等微小颗粒物的荷电量,且频率越高,幅值越大,荷电效果越好,从而可以提高装置对细小颗粒物的除尘效率。  相似文献   
99.
In this work, vinyltriethoxysilane (A151) and 3-aminopropyltriethoxysilane (KH550) were used to modify ammonium polyphosphate (APP), showing that the dispersibility of APP could be improved remarkably by A151 and KH550. The maximum explosion pressure of aluminum dust explosion decreased with the addition of APP, A151-APP (APP-A) and KH550-APP (APP-B), with the exception of the case where the inerting ratio (α) of APP-A was less than 0.4. After the addition of APP-B, there was little difference in flame propagation behavior and explosion pressure compared with that of adding APP, indicating that APP-B could retain the inhibition performance of APP compared with APP-A. When the inerting ratios of APP, APP-A and APP-B were 1.2, 1.4 and 1.4, respectively, the aluminum dust explosion could be completely inhibited. The explosion residues of aluminum dust/APP mainly consisted of Al2O3, P-containing and N-containing compounds. It could be analyzed that APP exerted the inhibition effect through both chemical and physical effects.  相似文献   
100.
为研究玉米淀粉粉尘爆炸危险性,采用哈特曼管式爆炸测试装置和20 L球爆炸测试装置对200目(<75μm)以下的玉米淀粉粉尘爆炸危险性进行评估,基于静电火花和粉尘质量浓度对粉尘爆炸的影响,对玉米淀粉的静电火花最小点火能量、爆炸下限质量浓度、最大爆炸压力和爆炸指数进行了研究,根据试验结果对玉米淀粉爆炸危险性进行分级。试验结果表明:温度在25℃,喷粉压力为0.80 MPa,粉尘质量浓度在250~750 g/m3范围内,粉尘的最小点火能量随着粉尘质量浓度增加而降低,其最小点火能量在40~80 mJ之间;在点火能量为10 kJ时,粉尘爆炸下限质量浓度在50~60 g/m3之间;在粉尘质量浓度为750 g/m3时,爆炸压力达到最大,为0.66 MPa;在粉尘质量浓度为500 g/m3时,爆炸指数达到最大,为17.21 MPa.m/s,其粉尘爆炸危险性分级为Ⅰ级。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号