排序方式: 共有106条查询结果,搜索用时 0 毫秒
31.
剪切应力对好氧颗粒污泥形态结构和微生物活性的影响机制研究 总被引:5,自引:4,他引:5
对不同剪切应力(0.189、0.267、0.327和0.377 N/m2)下4个序批式反应器(SBR)中好氧颗粒污泥的形态结构、比耗氧速率(SOUR)以及胞外聚合物进行了对比分析.结果表明,好氧颗粒污泥具有稳定的基本形态特征,其微生物主要由杆菌、球菌和丝状菌组成;其中杆菌能承受高剪切作用.是剪切应力为0.377 N/m2时的优势菌群.4个反应器中污泥粒径分布范围分别为0.2-0.5、0.5-1.5、0.5-1.5和0.3-0.5 mm;SOUR分别为34.54、40.08、46.26和46.42 mg/(g·h),胞外多聚糖分别为59.71、66-81、80.88和109.99 mg/g,胞外蛋白质分别为9.29、9.80、12.35和17.02 mg/g.好氧颗粒污泥比耗氧速率SOUR和胞外聚合物与剪切应力有很好的正相关性.确定了好氧颗粒污泥微生物活性与剪切应力的响应关系. 相似文献
32.
33.
采用微氧条件下的序批式活性污泥反应器(SBR)处理硝基苯废水。研究结果表明,在水力停留时间(HRT)为24h,曝气量为600mL/min的条件下,反应器对硝基苯的平均去除率为100.00%,对其共存污染物COD、氨氮也有较好的去除效果,平均去除率分别为97.78%和78.55%,对TN和TP的去除效果相对较差,其平均去除率仅为24.18%和19.09%。气相色谱/质谱(GC/MS)分析表明,硝基苯降解的主要中间产物为苯胺,说明反应器中硝基苯首先是通过还原途径降解为苯胺,苯胺再进一步被降解为CO2、H2O和NH3。考察了不同曝气量(200、400、600mL/min)条件对处理效果的影响,结果表明,曝气量的降低直接导致了反应器中DO浓度的降低,导致COD、苯胺的去除效果变差。曝气量由600 mL/min降低至200 mL/min,COD平均去除率由97.78%降低至82.09%,出水苯胺平均质量浓度由0mg/L升至15.04mg/L。 相似文献
34.
高浓度Vc生产废水培养好氧颗粒污泥的试验研究 总被引:1,自引:2,他引:1
采用高浓度难降解的Vc生产废水可以在SBR反应器中培养出好氧颗粒污泥.转化母液反应器中污泥实现完全颗粒化,得到的好氧颗粒污泥粒径为0.2~1 mm,平均沉降速度为31.2 m·h-1;精制或提取母液反应器中污泥部分颗粒化,得到的颗粒粒径为0.5~2.5 mm,平均沉降速度为26.3 m·h-1.由于形成好氧颗粒污泥,反应器系统表现出良好的运行性能,在进水COD 1 000~1 500 mg·L-1时去除率达到80%左右.如果反应器进水中补充加入一定浓度的易降解有机物,处理系统的去除效率还可进一步提高并能缩短启动时间.通过观察和比较不同进水反应器中的生物相发现,好氧颗粒污泥中出现的原后生动物种类及生物相丰富程度不仅与反应器运行状态有关,更重要的是取决于反应器中的进水水质.实验中好氧颗粒污泥的形成过程经历了污泥复活、污泥驯化和污泥颗粒化3个阶段.在运行控制过程中通过将沉降时间作为培养好氧颗粒污泥的一个关键控制参数,它既可以去除反应器中沉降性差的污泥还可以在短时间内调节反应器中的运行负荷,从而促进反应器中好氧污泥快速实现颗粒化. 相似文献
35.
微氧水解酸化工艺处理高浓度抗生素废水 总被引:9,自引:1,他引:9
试验研究了高浓度难生物降解抗生素废水微氧水解酸化效果.结果表明,微氧环境提高了兼性水解酸化菌的生理代谢功能,曝气搅拌改善了水力条件,在最短HRT为10h ,最大OLR为20kg/(m3·d)条件下,酸化率为58.64%,出水VFA为4825mg/L ,极大地改善了废水的生物降解性能,BOD5/COD升高了17%左右,为后续好氧生物处理提供了良好的基质准备.在进水水质波动较大的情况下,出水水质相对稳定,出水COD和SS浓度分别为7000~8000mg/L和150~300mg/L ,COD和SS去除率分别为15%~30%和90%~95%.出水VFA的变化滞后于酸化率的变化,酸化率能更好地表征水解酸化系统的效果.反应器底部的污泥床层是VFA生成的主要反应区,随着OLR的升高,达到稳定VFA浓度的反应器高度逐渐增加.填料区功能主要在于截留出水中的SS.污泥以粒径为0.5~1.0mm之间的小颗粒污泥和絮状污泥为主. 相似文献
36.
The influence of storage on the morphology and physiology of phthalic acid-degrading aerobic granules 总被引:1,自引:0,他引:1
The precultured aerobic granules with special degradabilities could be used as a feasible bioseed for enhancement of aerobic granulation systems. In practice, the storage stability, physicochemical characteristics, and recovering efficiency of granules are crucial for a long-distance transportation and successful application. In this study, phthalic acid (PA)-degrading aerobic granules were cultivated and stored for 8 wk at 4 °C. The granular size, settling ability as well as structure integrity was found stable during the storage period. It was observed that the upper 1/3 part of granules stored in the reagent bottle turned to black color, while the lower 2/3 part granules did not significantly change color (brown–yellow) after the 8-wk storage. The black and brown–yellow color PA-degrading granules were manually separated and re-inoculated into two identical sequencing batch reactors for reviving the PA degradation capability. After a 7 d operation, both black and yellow granules restored their activities to the levels before storage, in terms of total organic carbon removal efficiency (100%), specific oxygen uptake rate (59 mg g VSS−1 h−1), and adenosine triphosphate content (0.016 mg g VSS−1). This study demonstrated that aerobic granules grown on a complex substrate could tolerate storage conditions and rapidly restored their bioactivities toward the target pollutant. The results also shed the light on the future application of precultured aerobic granules with unique functions for biodegradation and bioremediation purpose. 相似文献
37.
好氧颗粒污泥细菌藻酸盐对Cu~(2+)的生物吸附和机制探讨 总被引:1,自引:0,他引:1
以好氧颗粒污泥中提取的细菌藻酸盐为原料制备干藻酸钙吸附剂,对水溶液中的Cu2+进行了吸附研究.对比了不同pH值和吸附剂投加量对吸附性能的影响,同时对吸附过程进行了模型拟合,测定了该吸附剂的解吸性能,并用傅立叶变换红外二阶导数光谱和原子力显微镜分析对吸附机制进行了探讨.结果表明,藻酸钙对Cu2+的吸附反应是一个比较快速的过程.当Cu2+初始浓度为100 mg/L,吸附剂投加量为0.7g/L时,吸附最佳pH值为4,吸附能力为67.67 mg/g.吸附过程可用Langmuir和Freundlich模型来描述.好氧颗粒污泥藻酸钙吸附剂对Cu2+的吸附过程中有离子交换和pH值升高现象发生,溶液中的Cu2+与吸附剂上Ca2+交换的同时需要有H+的参与来维持电荷平衡.傅立叶变换红外二阶导数光谱和原子力显微镜分析表明,好氧颗粒污泥藻酸钙吸附剂中MG嵌段与Cu2+和Ca2+结合的方式不同,Cu2+能与吸附剂表面的MG嵌段发生螯合,使藻酸钙表面的结构更加有序.以100 mmol/L HCl为解吸剂,解吸效率可达到91%. 相似文献
38.
39.
Aerobic granules which form through a cell-to-cell self-immobilization process have been intensively studied and developed for wastewater biotreatment. However, the microbiological origin of this phenomenon is still largely unknown. This study investigated the possible role of metabolic energy in the development of aerobic granules. Results showed that aerobic granulation was positively related to ATP-dependent N-acylhomoserine lactones (AHLs) and extracellular polymeric substances (EPSs) production. Inhibited ATP synthesis by a chemical uncoupler, 3,3′,4′,5-tetrachlorosalicylanilide, led to significant reduction of AHLs and EPSs production, which in turn prevented aerobic granulation. This study for the first time demonstrated the involvement of ATP-dependent AHLs in aerobic granulation. 相似文献
40.