首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   479篇
  免费   42篇
  国内免费   149篇
安全科学   43篇
废物处理   5篇
环保管理   114篇
综合类   298篇
基础理论   94篇
污染及防治   38篇
评价与监测   16篇
社会与环境   43篇
灾害及防治   19篇
  2024年   2篇
  2023年   8篇
  2022年   22篇
  2021年   29篇
  2020年   22篇
  2019年   23篇
  2018年   10篇
  2017年   32篇
  2016年   32篇
  2015年   25篇
  2014年   22篇
  2013年   36篇
  2012年   47篇
  2011年   44篇
  2010年   29篇
  2009年   31篇
  2008年   23篇
  2007年   24篇
  2006年   24篇
  2005年   24篇
  2004年   22篇
  2003年   23篇
  2002年   14篇
  2001年   9篇
  2000年   11篇
  1999年   8篇
  1998年   11篇
  1997年   6篇
  1996年   6篇
  1995年   5篇
  1994年   3篇
  1993年   4篇
  1992年   5篇
  1991年   6篇
  1990年   4篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1983年   3篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有670条查询结果,搜索用时 15 毫秒
231.
由城市污泥、猪粪混合堆肥试验表明:升温期堆体各剖面的湿度在50.82%~60.87%之间,高温期在38.7%~52.17%之间;升温期和高温期堆体中湿度的层次效应不明显,堆肥仓门、仓内壁以及堆体深度对湿度层次效应的影响较小;降温期堆体各剖面的湿度在24.54%~49.39%之间,湿度层次效应非常明显,仓门、仓内壁和堆体深度对湿度层次效应产生明显影响;后熟期堆体各剖面的湿度在19.18%~49.34%之间,湿度层次效应相对减弱,仓门和仓内壁是导致湿度层次效应减弱的重要原因.不同堆肥期堆体剖面的湿度差异由大到小为:后熟期>降温期>高温期=升温期,堆体的湿度由大到小为:下部>中部>上部.堆肥过程中湿度随时间的变化满足二级动力学方程.  相似文献   
232.
选取中国两个典型喀斯特石漠化生态系统(研究区Ⅰ广西盘阳河流域峰丛洼地石漠化区、研究区Ⅱ云南荞麦地流域中山山地石漠化区),通过遥感影像反演和广泛的野外验证,开展喀斯特生态系统植被总初级生产力(GPP)和土壤呼吸(Rs)的差异分析及其在地形地貌、海拔坡度、土地利用以及岩性等环境因子上的空间分异分析。结果表明:1)两个研究区雨季和非雨季的GPP均值均要大于Rs均值,峰丛洼地的GPP和Rs均值都要高于中山山地,但中山山地的Rs均值两级分异更为明显; 2) GPP与海拔总体上呈现显著的负相关关系(在平均海拔较低的研究区Ⅰ更为明显),GPP均值在坡度大于25°左右时随着坡度的增加而减少;两个研究区的Rs均随着海拔的升高先降后增,坡度小于40°时呈负相关; 3)不同土地覆盖类型GPP均值总体上呈现林地灌丛草地、耕地的规律,而Rs均值呈现出居住建设用地耕地草地灌丛林地的规律,常绿针叶林有着区域内最高的GPP值,城镇建设用地有着最高的Rs均值; 4)研究区雨季与非雨季的GPP、Rs均值均呈现岩溶区小于非岩溶区的特点(p0.001)。本研究可为西南喀斯特生态系统碳循环特征研究提供参考,为分析喀斯特区域碳汇特点和机制提供应用支撑,为区域制定侧重不同的生态策略提供思路和应用参考。  相似文献   
233.
田飞飞  纪鸿飞  王乐云  郑西来  辛佳  能惠 《环境科学》2018,39(10):4717-4726
为了揭示土壤水分、温度和添加不同氮肥对大沽河流域农田土壤氮素矿化的影响,设置对照(CK)、添加尿素N 120mg·kg~(-1)(Ur)和添加尿素N 36 mg·kg~(-1)+有机肥(相当于添加N 120 mg·kg~(-1),UM)这3个处理进行为期84 d的室内恒温培养实验,实验共设3个培养温度(15、25和35℃)和3个水分梯度[60%、75%和90%田间持水量(WHC)].结果表明,施肥类型和培养温度对土壤氮素矿化速率、累积矿化量和氮潜在矿化势(N0)均具有显著影响(P0.01).与CK处理相比,Ur和UM处理的矿化速率和累积矿化量分别增加了1.46~8.17和2.00~8.15倍.各施肥处理的土壤氮矿化速率和累积矿化氮量随温度升高而增加,且各温度梯度之间差异均达到显著水平(P0.05).与未施肥处理相比,Ur和UM施肥处理均能够显著提高土壤中可溶性有机氮(SON)的含量,且施肥处理土壤中SON含量与氮素累积矿化量之间有显著负相关关系,表明SON作为一个不可忽视的组分,参与了土壤氮素矿化过程.升高温度能显著提高土壤中SON的矿化速率和矿化强度,但水分对各处理土壤的SON无显著影响.此外,施肥处理显著降低了土壤氮矿化的温度敏感性(Q10)(P0.05),尿素配施有机肥处理的土壤的氮矿化温度敏感系数最低(Q10=1.01),说明配施有机肥显著降低了土壤氮素矿化速率对温度变化响应的强度,这有利于减缓高温条件下矿质氮的释放速率,并提升作物对氮素的利用效率.  相似文献   
234.
热带地区雨热条件丰富,硝化过程产生的硝态氮不利于氮素养分的保持,同时会带来氮氧化物排放等环境负面效应.橡胶树和茶树在热带地区广泛种植,不同土地利用方式土壤硝化速率和氮氧化物排放的差异尚不清楚.以海南白沙地区典型橡胶林和茶园土壤为研究对象,分别采集5 a (T5)和15 a (T15)茶园土壤和附近橡胶林(XJ)土壤,设置低(50% WFPS-L)和高(80% WFPS-H)两种不同水分含量,在25℃进行71d室内培养试验,探究不同土地利用方式和不同水分含量对土壤净硝化速率、NO和N2O排放的影响.结果表明:①橡胶林改为茶园后,在高含水量条件下,显著降低了土壤净硝化速率、NO和N2O排放,整体呈现XJH>T15H>T5H的趋势,XJH处理土壤净硝化速率、NO和N2O排放分别高达4.2 mg ·(kg ·d)-1、1.4 mg ·kg-1和14.3 mg ·kg-1(以N计);在低含水量条件下,茶园土壤显著降低了土壤NO排放,N2O排放在各土壤间差异不显著,净硝化速率在XJ和T15处理之间无显著差异;土壤NO排放和净硝化速率呈极显著正相关(P<0.01).②XJH净硝化速率高于XJL,茶园土壤呈相反趋势;XJ和T15的NO排放对水分的响应和净硝化速率趋势一致,高硝化速率促进NO排放,而T5处理NO排放受含水量影响不显著;相比低含水量处理,高含水量各处理显著促进N2O排放.结果表明,土壤有机质(SOM)、全氮(TN)、pH和含水量是影响土壤净硝化速率、NO和N2O排放的关键因子,高含水量条件下橡胶林转为茶园的种植模式显著降低了土壤净硝化速率和对环境的负面影响.  相似文献   
235.
不同耕作方式下土壤水分状况对土壤呼吸的初期影响   总被引:4,自引:4,他引:4  
以2001年在东北典型黑土上进行的保护性耕作长期定位试验下免耕、垄作及常规耕作土壤进行了室内培养实验,按照田间持水量(water-holding capacity,WHC)的30%、60%、90%、120%、150%、180%、210%、240%、270%设定了9个水分梯度,并分别对其二氧化碳(CO_2)排放量进行了22 d的短期观测,以研究不同耕作方式下土壤水分状况对土壤呼吸的初期影响.结果表明:1干土条件下在加水培养初期,3种耕作方式均产生了明显的激发效应,并且土壤呼吸速率与土壤含水量间存在正相关关系.2除干旱(30%WHC)及淹水(240%WHC、270%WHC)条件下,3种耕作方式CO_2排放通量分别为免耕垄作常规耕作.3对不同耕作方式下土壤水分状况及CO_2排放通量进行了方程拟合,在30%~270%WHC条件下,免耕的CO_2排放通量与水分状况拟合为二次回归方程,而垄作与常规耕作则是线性回归方程.在30%~210%WHC条件下,免耕与垄作下土壤CO_2排放通量与水分状况均可拟合为较好的对数方程,可决系数R~2分别为0.966、0.956.  相似文献   
236.
耕作和秸秆覆盖对苹果园土壤水分及养分的影响   总被引:7,自引:0,他引:7  
为了揭示土壤耕作和秸秆覆盖对苹果园土壤保蓄水性能及土壤肥力的影响,研究设置了以土壤耕作(免耕、翻耕、旋耕)为主处理,秸秆覆盖(秸秆覆盖、无覆盖)为副处理的裂区试验,对比分析了各处理果园土壤水分贮量、土壤肥力等性状。结果表明,免耕裸地与翻耕裸地处理的保蓄水效应在果树不同生长期表现不同,在5月份免耕裸地处理1 m土层内土壤贮水量高于翻耕裸地处理,而在10月份免耕裸地处理显著低于翻耕裸地处理;秸秆覆盖各处理1 m土层内土壤贮水量均明显高于无覆盖各处理,耕作与秸秆覆盖相结合在整个土壤水分测定过程中均以免耕秸秆覆盖土壤贮水量最高且较稳定;耕作与秸秆覆盖相结合显著提高了有机质含量,土壤速效肥含量明显增加,各处理以翻耕秸秆覆盖及免耕秸秆覆盖土壤养分含量为最高。在渭北洛川苹果生产基地,采用免耕秸秆覆盖技术能起到较好的保蓄水作用,土壤肥力明显增加。  相似文献   
237.
我国填埋场设计阶段,渗滤液产量计算结果往往偏小.参照山谷型填埋场,建立了一个长400 m,宽500 m的水量平衡计算模型,模型中垃圾体高50 m,分5个填埋阶段,每阶段填高10 m,用时2 a,共填埋10 a.利用该模型,分阶段计算填埋垃圾初始含水率对渗滤液来源组成和总产量的影响.渗滤液总产量由降雨入渗量和垃圾自身渗滤液产量组成,初始含水率越高,垃圾自身渗滤液产量和渗滤液总产量越大,垃圾自身渗滤液产量所占渗滤液总产量的比例也越高.当填埋垃圾初始含水率分别为27%、40%、50%和60%时,日平均渗滤液总产量分别为272、583、823和1 063 m3.d-1,垃圾自身渗滤液产量分别为-144、168、408和647 m3.d-1.垃圾初始含水率高于50%时,自身渗滤液产量占渗滤液总产量的比例超过50%,成为渗滤液总产量的主要部分.目前中国规范中采用的渗滤液产量计算方法,未考虑垃圾自身渗滤液产量,当填埋垃圾初始含水率较高时,计算结果偏小.基于上述水量平衡分析结果,进一步提出了包括垃圾自身渗滤液产量的修正计算公式,并通过2个大型中国南方填埋场的现场实测数据进行了验证.  相似文献   
238.
为了去除鸡粪中氟喹诺酮类(FQs)抗生素(包括诺氟沙星、环丙沙星、洛美沙星、恩诺沙星),研究了温度、停留时间和含水率等因素对热处理技术去除FQs的影响。结果表明:电加热回转炉装置的热处理技术能够有效去除鸡粪中FQs类污染物,在热处理时间一定时,鸡粪中4种FQs去除率随着温度的升高而增加;在处理时间40 min,温度达190℃时,鸡粪中诺氟沙星、环丙沙星、洛美沙星、恩诺沙星去除率达到64.5%~85.1%;温度达220℃时,4种FQs去除率均高于94.1%。热处理鸡粪中FQs应控制鸡粪的含水率低于25%为宜。  相似文献   
239.
用动态气室法对2个灌木群落(样地1:黄刺玫+荆条Rosa xanthina+Vitex negundo;样地2:沙棘Periploca sepium)的土壤碳通量进行了连续4年(2005~2008年)的定位测定,研究灌木群落土壤碳通量的年内、年际变化与土壤温度和水分的关系.结果表明:土壤碳通量具有明显的季节变化特点,受土壤温度和水分的影响,土壤碳通量的最大值出现在土壤温度和水分均较高的月份,最低值出现在3、12月以及其它较为干旱的月份;2个灌木群落4年土壤碳通量的平均值分别为(5.20±4.02)、(3.21±2.38)、(3.48±2.48)、(2.73±1.46)μmol.m-.2s-1和(6.10±4.31)、(3.90±2.54)、(3.89±3.07)、(3.92±2.71)μmol.m-.2s-1(以CO2计),4年的总平均值为(4.02±3.08)μmol.m-.2s-1.2个灌木群落4年土壤碳通量的总平均值分别为1002和1169 g.m-.2a-1(以C计),样地间差异不显著(p=0.35).剔除土壤水分胁迫时测定的数据后,指数函数可以很好地拟合土壤碳通量与土壤温度的关系,方程的决定系数分别在0.47~0.85和0.78~0.85之间;样地1和样地2的土壤碳通量温度敏感性指数(Q10值)分别在1.88~2.73和3.61~4.28之间.土壤水分对土壤碳通量的影响在样地1较为明显.但是,对4年测定所有数据的分段分析表明,生长季土壤水分对土壤碳通量影响显著(p0.05),非生长季土壤温度对土壤碳通量影响显著(p0.05).用包含土壤水分和土壤温度的4个双变量关系方程可提高模型的预测能力,R2值在0.52~0.89之间.研究结果可为黄土高原东部山区灌丛土壤碳通量乃至生态系统碳平衡研究提供参考.  相似文献   
240.
为了解黄土丘陵沟壑区极端强降雨条件下土壤水分与植被之间的关系,对2013 年7 月极端强降雨条件下黄土丘陵沟壑区5 种主要植物群落,即刺槐(Robinia psendoacacia)、柠条(Caragana intermedia)、铁杆蒿(Artemisia gmelinii)、长芒草(Stipa bungeana)、白羊草(Bothriochlo aischaemun)群落的土壤水分进行了调查与分析,结果表明:①极端强降雨下,植被是影响土壤含水量的主要因素;②草本群落的土壤水分明显好于人工林,其中长芒草群落的土壤含水量、土壤贮水量和土壤有效贮水量均最高,分别为17.8%、961.2 mm和691.2 mm,郁闭度最大的31 龄林土壤水分最差;③人工林地土壤水分可补充至300 cm左右,草本群落土壤水分可补充至500 cm左右,人工林地深层土壤水分的恢复仍十分困难.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号