首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   801篇
  免费   156篇
  国内免费   557篇
安全科学   64篇
废物处理   167篇
环保管理   59篇
综合类   800篇
基础理论   201篇
污染及防治   195篇
评价与监测   21篇
社会与环境   4篇
灾害及防治   3篇
  2024年   3篇
  2023年   16篇
  2022年   42篇
  2021年   42篇
  2020年   51篇
  2019年   38篇
  2018年   49篇
  2017年   54篇
  2016年   71篇
  2015年   86篇
  2014年   82篇
  2013年   82篇
  2012年   102篇
  2011年   79篇
  2010年   57篇
  2009年   53篇
  2008年   43篇
  2007年   66篇
  2006年   80篇
  2005年   58篇
  2004年   54篇
  2003年   44篇
  2002年   40篇
  2001年   37篇
  2000年   23篇
  1999年   35篇
  1998年   27篇
  1997年   14篇
  1996年   21篇
  1995年   16篇
  1994年   14篇
  1993年   13篇
  1992年   7篇
  1991年   5篇
  1990年   4篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
排序方式: 共有1514条查询结果,搜索用时 406 毫秒
781.
采用浆液浸涂法在堇青石蜂窝陶瓷载体上涂覆Al2O_3-TiO_2-ZSM-5分子筛复合载体,并通过浸渍法负载活性组分Mn-Fe-Ce,制备了M/ATZ-CC选择性催化还原催化剂。考察了催化剂的低温脱硝活性和抗水性能,表征了催化剂的物性参数和氨-程序升温脱附性能。实验结果表明,M/ATZ-CC催化剂具有优异的脱硝活性和抗水性能,在反应温度为160℃、水蒸气加入量为10%(φ)、NO体积分数为0.1%、n(NH_3)∶n(NO)=1、O_2体积分数为3.0%、体积空速为3 000~10 000 h~(-1)的条件下,NO去除率在80%以上。表征结果显示,该催化剂的比表面积、孔径、弱酸酸量、中强酸酸量和总酸量得到了显著提高。  相似文献   
782.
催化氧化法处理DSD酸废水的催化剂研制   总被引:1,自引:0,他引:1  
以金属Cu,Fe,Mn,Mo为主要活性组分,以γ—Al2O3为载体制备催化剂,在高温高压下催化氧化处理DSD酸废水,探讨了活性组分配比、焙烧温度对催化剂催化活性与稳定性的影响。实验结果表明,催化剂Fe—Mn/γ-Al2O3的催化效果好,金属离子溶出量低,且连续使用效果好,经处理后DSD酸氧化废水中的COD去除率达97.5%。  相似文献   
783.
本文通过腐蚀失重试验、腐蚀产物分析和交流阻抗谱研究了Q345R在不用的微量的两种小分子有机酸(甲酸和乙酸)中的常温25℃和液相高温85℃中腐蚀行为.根据试验结果可知,随着浓度的逐渐升高,Q345R在两种小分子有机酸腐蚀速率均有所升高,腐蚀产物逐渐增厚,腐蚀形貌未发生明显变化.根据电化学试验结果,在25℃环境温度下,小分子有机酸对Q345R的腐蚀剧烈程度随时间明显降低,并且表面吸附作用明显减弱.在85℃环境温度下,小分子有机酸对Q345R的腐蚀剧烈程度随时间变化不大,反应行为也未发生明显的变化.这说明在较高的温度下,随着反应激活能提高,扩散条件并非控制腐蚀反应的最主要因素,腐蚀行为也与较低环境温度下产生显著的区别.  相似文献   
784.
水蚤是广泛分布于各类淡水水体中的浮游动物,在水生生态系统中具有重要地位,也是水生毒理学研究中常用的模式生物。近年来,分子毒理学的发展为水蚤生态毒理学研究提供了新的工具和研究思路。本文分别从基因组学、转录组学、蛋白质组学、代谢组学和表观遗传组学方面,综述了不同环境污染物(重金属、农药和杀菌剂等有机污染物、环境激素类化合物、纳米材料和藻毒素等)对水蚤的生态毒理学效应及分子机制,为通过水蚤生态毒理学研究进行环境污染生物标志物筛选及生态风险评估提供参考。  相似文献   
785.
分别采用D401和N-117负载Fe(Ⅱ)制备非均相Fenton催化剂,探讨两种催化剂在不同初始溶液pH、初始H2O2质量浓度和保存条件下,催化降解苯酚的效果和铁溶出情况。结果表明:两种催化剂均能拓展Fenton反应pH范围;D401负载Fe(Ⅱ)催化苯酚降解速率较快,苯酚降解率随初始溶液pH升高而下降,溶出铁催化的均相Fenton反应是苯酚降解的主要原因;N-117负载Fe(Ⅱ)催化剂苯酚降解速率随初始溶液pH升高而下降,非均相Fenton反应是主要反应过程;初始H2O2质量浓度升高能使D401负载Fe(Ⅱ)的溶出总铁质量浓度显著升高,但对N-117负载Fe(Ⅱ)影响很小;水中较高的DO能显著降低两种催化剂的苯酚降解效果。  相似文献   
786.
超声协同Fenton法是利用超声的空化效应及自由基效应强化Fenton法对废水的处理效率,实现两者对废水中有机污染物的协同降解。概述了超声与Fenton法处理废水的协同机制。综述了废水pH、催化剂和H2O2投加量、超声功率、温度等工艺条件的优化研究,催化剂的研发以及共存物质的影响研究等方面的进展。指出开发新型高效、可重复利用、廉价易得的催化剂是提高超声协同Fenton法降解有机污染物效率的关键,还可将超声、Fenton法或超声协同Fenton法与其他的氧化法或生化方法相结合,寻找更加安全、高效、低成本的新途径。  相似文献   
787.
高效催化剂的研制与开发是低温氨气选择性催化还原(NH_3-SCR)脱硝技术的核心。从活性组分(单一氧化物型、复合氧化物型)和载体(金属氧化物、碳基材料、分子筛)两方面详细介绍了低温NH_3-SCR催化剂,总结了其研究现状,并讨论了其抗水、抗硫性能及失活原因。指出在保证催化剂具有较高活性的同时提高其抗水、抗硫性能,是低温NH_3-SCR催化剂未来研究的重点。  相似文献   
788.
酚类化合物(BP)是重要的工业原料或中间体,但工业废水含有的酚类化合物会对环境造成污染。为建立酚类化合物臭氧氧化速率的QSPR(quantitative structure-property relationship)预测模型,分析了23种酚的分子结构与臭氧氧化速率之间的相关关系,计算了这些酚的分子连接性指数和分子形状指数,优化筛选了连接性指数的1χ和2χ、分子形状指数的K1和K2共4种参数,将其作为BP神经网络的输入层变量,臭氧氧化速率作为输出层变量,采用4:2:1的网络结构,获得了令人满意的QSPR神经网络预测模型,模型总相关系数r为0.976,计算得到的臭氧氧化速率的预测值与实验值较为吻合,平均残差仅为0.05;为检验结构参数建立模型的普适性,同样方法建立对酚类化合物的辛醇-水分配系数的预测模型,模型总相关系数r达到0.993,辛醇-水分配系数的预测值与实验值吻合度较为理想,结果表明,本法建构的神经网络模型具有良好的稳健性和预测能力。  相似文献   
789.
近年来,羟基多溴代二苯醚(OH-PBDEs)的类甲状腺素效应逐渐引起人们的关注,然而其结构效应关系和致毒机制尚不清楚。甲状腺激素结合球蛋白(TBG)和运甲状腺素蛋白(TTR)是人体转运甲状腺素的重要蛋白,通过计算毒理学手段可以揭示OH-PBDEs的微观毒理机制。利用分子对接技术研究OH-PBDEs与TBG、TTR的结合模式和构象特征,识别关键氢键氨基酸为赖氨酸Lys270(TBG),亮氨酸Leu110(TTR)和丝氨酸Ser117(TTR)。基于活性构象特征,构建14种典型OH-PBDEs的3D-QSAR模型,定量预测OH-PBDEs与TBG、TTR的结合亲和力。最佳预测模型的相关系数r2分别为0.966(TBG)和0.961(TTR),抽一法交叉验证相关系数q2分别为0.560(TBG)和0.525(TTR)。研究发现,OH-PBDEs的静电和氢键作用可增强结合亲和力,分别贡献65.4%(TBG)和68.7%(TTR)。研究结果为揭示OH-PBDEs与甲状腺素转运蛋白的相互作用提供新视角,有助于全面评价OH-PBDEs对人体甲状腺素调节功能的损伤。  相似文献   
790.
石墨烯(graphene,G)及其衍生物由于具有独特的理化性质,被广泛应用于能源、生物医学等领域,但尚缺乏其对生物体和环境潜在危害的研究。采用分子动力学模拟并结合光谱学方法(紫外可见吸收光谱、紫外变温实验及荧光光谱),分析了石墨烯与抑癌基因p53启动子区DNA片段(p53-DNA)间的相互作用,并探讨了相关作用机制。石墨烯的部分芳香环与p53-DNA碱基的芳香环之间存在π-π堆积作用,两者可以通过嵌插作用进行结合,同时还通过沟槽作用进一步结合。光谱实验进一步证实,在石墨烯作用下,p53-DNA的熔点(Tm)值升高,EB-DNA体系发生静态荧光淬灭,说明石墨烯能与p53-DNA结合;同时,p53-DNA与石墨烯结合后在260 nm处的吸光度升高,说明石墨烯对p53-DNA的双螺旋结构具有一定的破坏作用。上述研究结果从分子水平上分析了石墨烯与p53-DNA间的相互作用机制,有助于进一步阐明石墨烯的毒性作用机理。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号