首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   2篇
  国内免费   4篇
环保管理   6篇
综合类   18篇
基础理论   3篇
污染及防治   1篇
评价与监测   1篇
社会与环境   4篇
灾害及防治   3篇
  2022年   1篇
  2021年   3篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   5篇
  2013年   2篇
  2012年   4篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2003年   3篇
  2002年   1篇
  1999年   1篇
  1988年   1篇
  1982年   1篇
  1971年   1篇
排序方式: 共有36条查询结果,搜索用时 15 毫秒
31.
节庆营销是影响旅游活动年内变化的重要因素。优化节庆活动,拉长旅游活动“旺季”,是推动旅游业平稳发展的重要问题。以内蒙古阿拉善盟5个4A级景区为例,采用带虚拟变量的回归模型分析了节庆营销对景区客流量年内变化的边际弹性。结果发现:5个景区4年节庆活动边际弹性≥3.0,气候舒适度边际弹性≥1.0。为缓解旅游活动的年内集中性,需要把节庆活动调整至4—9月,平滑客流量的年内分布。  相似文献   
32.
1961~2010年中国大尺度区域暴雨时空分布特征研究   总被引:1,自引:0,他引:1  
长时间大范围的区域暴雨作为一种极端天气气候事件,是人民生产生活的一大威胁,已成为社会和学界的关注焦点之一,亟需研究中国长时间序列区域暴雨的时空演变特征。通过定义的区域暴雨事件,选取持续天数、影响站点数、最大日降雨量和最大累积降雨量4项指标,统计分析了1961~2010年中国区域暴雨的时空变化格局。结果表明:在空间格局上,1961~2010年中国区域暴雨主要分布在黑龙江漠河至云南腾冲一线以东的东部沿海季风区,而西北内陆则无区域暴雨发生;在省际分布上,多集中发生在以广东为首的东部沿海省市;在时间序列上,中国区域暴雨存在准10a(6.5a和13a)的周期振荡,以1997年前后年份发生次数较多,年内多集中在5~9月,且4项指标均在6月份达到最高。  相似文献   
33.
鄱阳湖径流量时间序列的混沌特征分析   总被引:2,自引:0,他引:2  
流域径流受诸多因素影响,变化复杂,仅凭观测站统计数据难以发现其演变规律。以混沌理论为基础,以鄱阳湖入湖外洲站、李家渡站和渡峰坑站的月径流时间序列为研究对象详细说明了求取时间序列中混沌特征数的方法。首先利用C C方法选取相空间重构参数即时间延迟〖WTBX〗τ和嵌入维数m〖WTBZ〗,在此基础上进行相空间重构,采用G P关联积分法计算关联维数和Rosenstein小数据量法计算最大Lypanuov指数。结果表明鄱阳湖入湖外洲站、李家渡站和渡峰坑站的月径流序列的饱和关联维数非整数,同时最大Lyapunov指数也为正数,这充分说明鄱阳湖入湖外洲站、李家渡站和渡峰坑站的月径流序列均具有明显的混沌特征。而且通过最大Lyapunov指数和关联维数的计算表明鄱阳湖入湖的外洲站月径流复杂程度最大,混沌特性最强,对初值的敏感性最强,李家渡站次之,渡峰坑站最小  相似文献   
34.
ABSTRACT: A monthly water‐balance (WB) model was tested in 44 river basins from diverse physiographic and climatic regions across the conterminous United States (U.S.). The WB model includes the concepts of climatic water supply and climatic water demand, seasonality in climatic water supply and demand, and soil‐moisture storage. Exhaustive search techniques were employed to determine the optimal set of precipitation and temperature stations, and the optimal set of WB model parameters to use for each basin. It was found that the WB model worked best for basins with: (1) a mean elevation less than 450 meters or greater than 2000 meters, and/or (2) monthly runoff that is greater than 5 millimeters (mm) more than 80 percent of the time. In a separate analysis, a multiple linear regression (MLR) was computed using the adjusted R‐square values obtained by comparing measured and estimated monthly runoff of the original 44 river basins as the dependent variable, and combinations of various independent variables [streamflow gauge latitude, longitude, and elevation; basin area, the long‐term mean and standard deviation of annual precipitation; temperature and runoff; and low‐flow statistics (i.e., the percentage of months with monthly runoff that is less than 5 mm)]. Results from the MLR study showed that the reliability of a WB model for application in a specific region can be estimated from mean basin elevation and the percentage of months with gauged runoff less than 5 mm. The MLR equations were subsequently used to estimate adjusted R‐square values for 1,646 gauging stations across the conterminous U.S. Results of this study indicate that WB models can be used reliably to estimate monthly runoff in the eastern U.S., mountainous areas of the western U.S., and the Pacific Northwest. Applications of monthly WB models in the central U.S. can lead to uncertain estimates of runoff.  相似文献   
35.
基于生态保护目标的太子河下游河道生态需水量计算   总被引:5,自引:3,他引:2  
河流生态需水量计算是进行生态水权分配的一项基础性工作,是生态环境保护和水资源配置的依据.随着社会经济的发展,流域水资源短缺和生态环境问题日益突出.针对太子河下游河段水资源开发利用现状及存在的生态环境问题,在确定生态保护目标的基础上,采用月保证率法和生态水力学法计算下游河道不同等级生态需水量,既可以从各月角度反映河道生态需水是一个与自然径流相适应的过程,又注重水生生物的关键期和生境需求.通过Tennant法验证月保证率法和生态水力学法计算结果可靠,最终确定太子河下游河道最小、适宜和理想等级年生态需水量分别为:5.31×108m3、8.52×108m3和12.17×108m3,而且现状流量可以满足最小生态需水量的要求.  相似文献   
36.
大气污染物排放清单是了解各地区大气污染物排放及其时空分布,精确模拟该地区环境空气质量的最基础资料.现有大气污染物排放清单的粗时空分辨率,极大地限制了空气质量数值预报的准确性.本研究以江苏省大型固定燃煤源为例,以2012年为基准年,收集江苏省电力企业在线监控系统数据及江苏省大气核查核算表数据,结合相关文献的排放因子,分析了江苏省大型固定燃煤源主要污染物的总排放量和月变化特征.分析结果表明:1 SO2、NOx、TSP、PM10、PM2.5、CO、EC、OC、NMVOC、NH3等大气污染物的排放总量分别达到106.0、278.3、40.9、32.7、21.7、582.0、3.6、2.5、17.3、2.2 kt.2呈现2~3、7~8、12月排放量高,9~10月排放量低的月变化特征,可能原因是2~3月处于春节阶段,为保证节日供应,在此期间居民取暖、用电等都有可能增加;7~8月高温天气用电量增加,12月北方城市冬季燃煤取暖导致的煤炭消耗量增加.另外,由于部分污染物排放因子取自国内外相关文献,是本研究清单不确定性的主要因素.今后的工作可以在排放因子实测更新以及将排放清单纳入空气质量预报模式等方面进行更为深入的研究.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号